Non-chromatic-adherence of the DP Color Function via Generalized Theta Graphs
DP-coloring (also called correspondence coloring) is a generalization of list coloring that has been widely studied in recent years after its introduction by Dvoř\'{a}k and Postle in 2015. The chromatic polynomial of a graph is an extensively studied notion in combinatorics since its introducti...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-10 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Manh Vu Bui Kaul, Hemanshu Maxfield, Michael Mudrock, Jeffrey A Shin, Paul Thomason, Seth |
description | DP-coloring (also called correspondence coloring) is a generalization of list coloring that has been widely studied in recent years after its introduction by Dvoř\'{a}k and Postle in 2015. The chromatic polynomial of a graph is an extensively studied notion in combinatorics since its introduction by Birkhoff in 1912; denoted \(P(G,m)\), it equals the number of proper \(m\)-colorings of graph \(G\). Counting function analogues of the chromatic polynomial have been introduced and studied for list colorings: \(P_{\ell}\), the list color function (1990); DP colorings: \(P_{DP}\), the DP color function (2019), and \(P^*_{DP}\), the dual DP color function (2021). For any graph \(G\) and \(m \in \mathbb{N}\), \(P_{DP}(G, m) \leq P_\ell(G,m) \leq P(G,m) \leq P_{DP}^*(G,m)\). A function \(f\) is chromatic-adherent if for every graph \(G\), \(f(G,a) = P(G,a)\) for some \(a \geq \chi(G)\) implies that \(f(G,m) = P(G,m)\) for all \(m \geq a\). It is not known if the list color function and the DP color function are chromatic-adherent. We show that the DP color function is not chromatic-adherent by studying the DP color function of Generalized Theta graphs. The tools we develop along with the Rearrangement Inequality give a new method for determining the DP color function of all Theta graphs and the dual DP color function of all Generalized Theta graphs. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2580808918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580808918</sourcerecordid><originalsourceid>FETCH-proquest_journals_25808089183</originalsourceid><addsrcrecordid>eNqNirEKwjAURYMgWLT_EHAOpInVOleri-LQvYT0laTUvJqkDn69HfwAucOBc-6CJELKjBU7IVYkDaHnnIv9QeS5TMjtjo5p4_GpotVMtQY8OA0UOxoN0NODljigp9XkdLTo6NsqegEHXg32Ay2tDcTZeDWasCHLTg0B0h_XZFud6_LKRo-vCUJsepy8m1Mj8oLPO2aF_O_1BTEcPSY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580808918</pqid></control><display><type>article</type><title>Non-chromatic-adherence of the DP Color Function via Generalized Theta Graphs</title><source>Free E- Journals</source><creator>Manh Vu Bui ; Kaul, Hemanshu ; Maxfield, Michael ; Mudrock, Jeffrey A ; Shin, Paul ; Thomason, Seth</creator><creatorcontrib>Manh Vu Bui ; Kaul, Hemanshu ; Maxfield, Michael ; Mudrock, Jeffrey A ; Shin, Paul ; Thomason, Seth</creatorcontrib><description>DP-coloring (also called correspondence coloring) is a generalization of list coloring that has been widely studied in recent years after its introduction by Dvoř\'{a}k and Postle in 2015. The chromatic polynomial of a graph is an extensively studied notion in combinatorics since its introduction by Birkhoff in 1912; denoted \(P(G,m)\), it equals the number of proper \(m\)-colorings of graph \(G\). Counting function analogues of the chromatic polynomial have been introduced and studied for list colorings: \(P_{\ell}\), the list color function (1990); DP colorings: \(P_{DP}\), the DP color function (2019), and \(P^*_{DP}\), the dual DP color function (2021). For any graph \(G\) and \(m \in \mathbb{N}\), \(P_{DP}(G, m) \leq P_\ell(G,m) \leq P(G,m) \leq P_{DP}^*(G,m)\). A function \(f\) is chromatic-adherent if for every graph \(G\), \(f(G,a) = P(G,a)\) for some \(a \geq \chi(G)\) implies that \(f(G,m) = P(G,m)\) for all \(m \geq a\). It is not known if the list color function and the DP color function are chromatic-adherent. We show that the DP color function is not chromatic-adherent by studying the DP color function of Generalized Theta graphs. The tools we develop along with the Rearrangement Inequality give a new method for determining the DP color function of all Theta graphs and the dual DP color function of all Generalized Theta graphs.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Color ; Coloring ; Combinatorial analysis ; Graphs ; Polynomials</subject><ispartof>arXiv.org, 2021-10</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Manh Vu Bui</creatorcontrib><creatorcontrib>Kaul, Hemanshu</creatorcontrib><creatorcontrib>Maxfield, Michael</creatorcontrib><creatorcontrib>Mudrock, Jeffrey A</creatorcontrib><creatorcontrib>Shin, Paul</creatorcontrib><creatorcontrib>Thomason, Seth</creatorcontrib><title>Non-chromatic-adherence of the DP Color Function via Generalized Theta Graphs</title><title>arXiv.org</title><description>DP-coloring (also called correspondence coloring) is a generalization of list coloring that has been widely studied in recent years after its introduction by Dvoř\'{a}k and Postle in 2015. The chromatic polynomial of a graph is an extensively studied notion in combinatorics since its introduction by Birkhoff in 1912; denoted \(P(G,m)\), it equals the number of proper \(m\)-colorings of graph \(G\). Counting function analogues of the chromatic polynomial have been introduced and studied for list colorings: \(P_{\ell}\), the list color function (1990); DP colorings: \(P_{DP}\), the DP color function (2019), and \(P^*_{DP}\), the dual DP color function (2021). For any graph \(G\) and \(m \in \mathbb{N}\), \(P_{DP}(G, m) \leq P_\ell(G,m) \leq P(G,m) \leq P_{DP}^*(G,m)\). A function \(f\) is chromatic-adherent if for every graph \(G\), \(f(G,a) = P(G,a)\) for some \(a \geq \chi(G)\) implies that \(f(G,m) = P(G,m)\) for all \(m \geq a\). It is not known if the list color function and the DP color function are chromatic-adherent. We show that the DP color function is not chromatic-adherent by studying the DP color function of Generalized Theta graphs. The tools we develop along with the Rearrangement Inequality give a new method for determining the DP color function of all Theta graphs and the dual DP color function of all Generalized Theta graphs.</description><subject>Color</subject><subject>Coloring</subject><subject>Combinatorial analysis</subject><subject>Graphs</subject><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNirEKwjAURYMgWLT_EHAOpInVOleri-LQvYT0laTUvJqkDn69HfwAucOBc-6CJELKjBU7IVYkDaHnnIv9QeS5TMjtjo5p4_GpotVMtQY8OA0UOxoN0NODljigp9XkdLTo6NsqegEHXg32Ay2tDcTZeDWasCHLTg0B0h_XZFud6_LKRo-vCUJsepy8m1Mj8oLPO2aF_O_1BTEcPSY</recordid><startdate>20211006</startdate><enddate>20211006</enddate><creator>Manh Vu Bui</creator><creator>Kaul, Hemanshu</creator><creator>Maxfield, Michael</creator><creator>Mudrock, Jeffrey A</creator><creator>Shin, Paul</creator><creator>Thomason, Seth</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211006</creationdate><title>Non-chromatic-adherence of the DP Color Function via Generalized Theta Graphs</title><author>Manh Vu Bui ; Kaul, Hemanshu ; Maxfield, Michael ; Mudrock, Jeffrey A ; Shin, Paul ; Thomason, Seth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25808089183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Color</topic><topic>Coloring</topic><topic>Combinatorial analysis</topic><topic>Graphs</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Manh Vu Bui</creatorcontrib><creatorcontrib>Kaul, Hemanshu</creatorcontrib><creatorcontrib>Maxfield, Michael</creatorcontrib><creatorcontrib>Mudrock, Jeffrey A</creatorcontrib><creatorcontrib>Shin, Paul</creatorcontrib><creatorcontrib>Thomason, Seth</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manh Vu Bui</au><au>Kaul, Hemanshu</au><au>Maxfield, Michael</au><au>Mudrock, Jeffrey A</au><au>Shin, Paul</au><au>Thomason, Seth</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Non-chromatic-adherence of the DP Color Function via Generalized Theta Graphs</atitle><jtitle>arXiv.org</jtitle><date>2021-10-06</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>DP-coloring (also called correspondence coloring) is a generalization of list coloring that has been widely studied in recent years after its introduction by Dvoř\'{a}k and Postle in 2015. The chromatic polynomial of a graph is an extensively studied notion in combinatorics since its introduction by Birkhoff in 1912; denoted \(P(G,m)\), it equals the number of proper \(m\)-colorings of graph \(G\). Counting function analogues of the chromatic polynomial have been introduced and studied for list colorings: \(P_{\ell}\), the list color function (1990); DP colorings: \(P_{DP}\), the DP color function (2019), and \(P^*_{DP}\), the dual DP color function (2021). For any graph \(G\) and \(m \in \mathbb{N}\), \(P_{DP}(G, m) \leq P_\ell(G,m) \leq P(G,m) \leq P_{DP}^*(G,m)\). A function \(f\) is chromatic-adherent if for every graph \(G\), \(f(G,a) = P(G,a)\) for some \(a \geq \chi(G)\) implies that \(f(G,m) = P(G,m)\) for all \(m \geq a\). It is not known if the list color function and the DP color function are chromatic-adherent. We show that the DP color function is not chromatic-adherent by studying the DP color function of Generalized Theta graphs. The tools we develop along with the Rearrangement Inequality give a new method for determining the DP color function of all Theta graphs and the dual DP color function of all Generalized Theta graphs.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2580808918 |
source | Free E- Journals |
subjects | Color Coloring Combinatorial analysis Graphs Polynomials |
title | Non-chromatic-adherence of the DP Color Function via Generalized Theta Graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T11%3A08%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Non-chromatic-adherence%20of%20the%20DP%20Color%20Function%20via%20Generalized%20Theta%20Graphs&rft.jtitle=arXiv.org&rft.au=Manh%20Vu%20Bui&rft.date=2021-10-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2580808918%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580808918&rft_id=info:pmid/&rfr_iscdi=true |