Development of titanium dioxide incorporated ultrathin cellulose acetate membrane for enhanced forward osmosis performance
This study was conducted to develop ultrathin forward osmosis (FO) membrane by phase inversion process. Hydrophilic cellulose acetate (CA) polymer and titanium dioxide (TiO 2 ) nanoparticles were used to form a highly water permeable and stable FO membrane. The physical characteristics of prepared n...
Gespeichert in:
Veröffentlicht in: | Nanotechnology for environmental engineering 2021-12, Vol.6 (3), Article 67 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Nanotechnology for environmental engineering |
container_volume | 6 |
creator | Jain, Harshita Dhupper, Renu Verma, Anoop Kumar Garg, Manoj Chandra |
description | This study was conducted to develop ultrathin forward osmosis (FO) membrane by phase inversion process. Hydrophilic cellulose acetate (CA) polymer and titanium dioxide (TiO
2
) nanoparticles were used to form a highly water permeable and stable FO membrane. The physical characteristics of prepared nanomaterial and membrane were characterized by scanning electron microscopy, elemental mapping and x-ray diffraction. The FO performance of the developed membrane was evaluated in terms of pure osmotic water flux and reverse salt flux. A consistent water flux was observed during a long-term experiment with the help of the fabricated membrane. Average water flux of 33.63 L/m
2
/h and reverse salt flux of 10.34 g/m
2
/h were achieved due to extensive hydrogen bonding between cellulose ester and titania particles. The resultant membrane was found to be highly efficient in terms of FO performance and can be utilized for efficient desalinization of water. |
doi_str_mv | 10.1007/s41204-021-00161-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2580808037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580808037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c234w-4d67c102956381720ac8ec0cc75b60eaa59d7a71c53ac60eae941b4eece765aa3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIVIUf4GSJc8CPOG6OqDylSlzgbLnOhrpK7GAnBPh6HILghvawr5lZ7SB0RskFJURexpwykmeE0YwQWtBsPEALxguRFXwlD39rWR6j0xj3JKHKshS8WKDPa3iDxnctuB77Gve2184OLa6sf7cVYOuMD50PuocKD02fip112EDTDI2PgLWBPi1xC-02aAe49gGD22lnEiM1ow4V9rH10UbcQUijdlqeoKNaNxFOf_ISPd_ePK3vs83j3cP6apMZxvMxy6tCGkpYKdI3VDKizQoMMUaKbUFAa1FWUktqBNdmGkCZ020OYEAWQmu-ROezbhf86wCxV3s_BJdOKiZWZAouE4rNKBN8jAFq1QXb6vChKFGTzWq2WSWb1bfNakwkPpNiArsXCH_S_7C-AGHihAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580808037</pqid></control><display><type>article</type><title>Development of titanium dioxide incorporated ultrathin cellulose acetate membrane for enhanced forward osmosis performance</title><source>SpringerLink Journals - AutoHoldings</source><creator>Jain, Harshita ; Dhupper, Renu ; Verma, Anoop Kumar ; Garg, Manoj Chandra</creator><creatorcontrib>Jain, Harshita ; Dhupper, Renu ; Verma, Anoop Kumar ; Garg, Manoj Chandra</creatorcontrib><description>This study was conducted to develop ultrathin forward osmosis (FO) membrane by phase inversion process. Hydrophilic cellulose acetate (CA) polymer and titanium dioxide (TiO
2
) nanoparticles were used to form a highly water permeable and stable FO membrane. The physical characteristics of prepared nanomaterial and membrane were characterized by scanning electron microscopy, elemental mapping and x-ray diffraction. The FO performance of the developed membrane was evaluated in terms of pure osmotic water flux and reverse salt flux. A consistent water flux was observed during a long-term experiment with the help of the fabricated membrane. Average water flux of 33.63 L/m
2
/h and reverse salt flux of 10.34 g/m
2
/h were achieved due to extensive hydrogen bonding between cellulose ester and titania particles. The resultant membrane was found to be highly efficient in terms of FO performance and can be utilized for efficient desalinization of water.</description><identifier>ISSN: 2365-6379</identifier><identifier>EISSN: 2365-6387</identifier><identifier>DOI: 10.1007/s41204-021-00161-w</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Acetic acid ; Cellulose acetate ; Cellulose acetate membranes ; Cellulose esters ; Desalination ; Earth and Environmental Science ; Earth Sciences ; Environment ; Environmental Science and Engineering ; Fluctuations ; Hydrogen bonding ; Membranes ; Nanomaterials ; Nanoparticles ; Nanotechnology and Microengineering ; Original Paper ; Osmosis ; Physical characteristics ; Physical properties ; Polymers ; Scanning electron microscopy ; Titanium ; Titanium dioxide ; X-ray diffraction</subject><ispartof>Nanotechnology for environmental engineering, 2021-12, Vol.6 (3), Article 67</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c234w-4d67c102956381720ac8ec0cc75b60eaa59d7a71c53ac60eae941b4eece765aa3</citedby><cites>FETCH-LOGICAL-c234w-4d67c102956381720ac8ec0cc75b60eaa59d7a71c53ac60eae941b4eece765aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s41204-021-00161-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s41204-021-00161-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Jain, Harshita</creatorcontrib><creatorcontrib>Dhupper, Renu</creatorcontrib><creatorcontrib>Verma, Anoop Kumar</creatorcontrib><creatorcontrib>Garg, Manoj Chandra</creatorcontrib><title>Development of titanium dioxide incorporated ultrathin cellulose acetate membrane for enhanced forward osmosis performance</title><title>Nanotechnology for environmental engineering</title><addtitle>Nanotechnol. Environ. Eng</addtitle><description>This study was conducted to develop ultrathin forward osmosis (FO) membrane by phase inversion process. Hydrophilic cellulose acetate (CA) polymer and titanium dioxide (TiO
2
) nanoparticles were used to form a highly water permeable and stable FO membrane. The physical characteristics of prepared nanomaterial and membrane were characterized by scanning electron microscopy, elemental mapping and x-ray diffraction. The FO performance of the developed membrane was evaluated in terms of pure osmotic water flux and reverse salt flux. A consistent water flux was observed during a long-term experiment with the help of the fabricated membrane. Average water flux of 33.63 L/m
2
/h and reverse salt flux of 10.34 g/m
2
/h were achieved due to extensive hydrogen bonding between cellulose ester and titania particles. The resultant membrane was found to be highly efficient in terms of FO performance and can be utilized for efficient desalinization of water.</description><subject>Acetic acid</subject><subject>Cellulose acetate</subject><subject>Cellulose acetate membranes</subject><subject>Cellulose esters</subject><subject>Desalination</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environment</subject><subject>Environmental Science and Engineering</subject><subject>Fluctuations</subject><subject>Hydrogen bonding</subject><subject>Membranes</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanotechnology and Microengineering</subject><subject>Original Paper</subject><subject>Osmosis</subject><subject>Physical characteristics</subject><subject>Physical properties</subject><subject>Polymers</subject><subject>Scanning electron microscopy</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><subject>X-ray diffraction</subject><issn>2365-6379</issn><issn>2365-6387</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UMtOwzAQtBBIVIUf4GSJc8CPOG6OqDylSlzgbLnOhrpK7GAnBPh6HILghvawr5lZ7SB0RskFJURexpwykmeE0YwQWtBsPEALxguRFXwlD39rWR6j0xj3JKHKshS8WKDPa3iDxnctuB77Gve2184OLa6sf7cVYOuMD50PuocKD02fip112EDTDI2PgLWBPi1xC-02aAe49gGD22lnEiM1ow4V9rH10UbcQUijdlqeoKNaNxFOf_ISPd_ePK3vs83j3cP6apMZxvMxy6tCGkpYKdI3VDKizQoMMUaKbUFAa1FWUktqBNdmGkCZ020OYEAWQmu-ROezbhf86wCxV3s_BJdOKiZWZAouE4rNKBN8jAFq1QXb6vChKFGTzWq2WSWb1bfNakwkPpNiArsXCH_S_7C-AGHihAg</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Jain, Harshita</creator><creator>Dhupper, Renu</creator><creator>Verma, Anoop Kumar</creator><creator>Garg, Manoj Chandra</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7SU</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope></search><sort><creationdate>20211201</creationdate><title>Development of titanium dioxide incorporated ultrathin cellulose acetate membrane for enhanced forward osmosis performance</title><author>Jain, Harshita ; Dhupper, Renu ; Verma, Anoop Kumar ; Garg, Manoj Chandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c234w-4d67c102956381720ac8ec0cc75b60eaa59d7a71c53ac60eae941b4eece765aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acetic acid</topic><topic>Cellulose acetate</topic><topic>Cellulose acetate membranes</topic><topic>Cellulose esters</topic><topic>Desalination</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environment</topic><topic>Environmental Science and Engineering</topic><topic>Fluctuations</topic><topic>Hydrogen bonding</topic><topic>Membranes</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanotechnology and Microengineering</topic><topic>Original Paper</topic><topic>Osmosis</topic><topic>Physical characteristics</topic><topic>Physical properties</topic><topic>Polymers</topic><topic>Scanning electron microscopy</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><topic>X-ray diffraction</topic><toplevel>online_resources</toplevel><creatorcontrib>Jain, Harshita</creatorcontrib><creatorcontrib>Dhupper, Renu</creatorcontrib><creatorcontrib>Verma, Anoop Kumar</creatorcontrib><creatorcontrib>Garg, Manoj Chandra</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><jtitle>Nanotechnology for environmental engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jain, Harshita</au><au>Dhupper, Renu</au><au>Verma, Anoop Kumar</au><au>Garg, Manoj Chandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of titanium dioxide incorporated ultrathin cellulose acetate membrane for enhanced forward osmosis performance</atitle><jtitle>Nanotechnology for environmental engineering</jtitle><stitle>Nanotechnol. Environ. Eng</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>6</volume><issue>3</issue><artnum>67</artnum><issn>2365-6379</issn><eissn>2365-6387</eissn><abstract>This study was conducted to develop ultrathin forward osmosis (FO) membrane by phase inversion process. Hydrophilic cellulose acetate (CA) polymer and titanium dioxide (TiO
2
) nanoparticles were used to form a highly water permeable and stable FO membrane. The physical characteristics of prepared nanomaterial and membrane were characterized by scanning electron microscopy, elemental mapping and x-ray diffraction. The FO performance of the developed membrane was evaluated in terms of pure osmotic water flux and reverse salt flux. A consistent water flux was observed during a long-term experiment with the help of the fabricated membrane. Average water flux of 33.63 L/m
2
/h and reverse salt flux of 10.34 g/m
2
/h were achieved due to extensive hydrogen bonding between cellulose ester and titania particles. The resultant membrane was found to be highly efficient in terms of FO performance and can be utilized for efficient desalinization of water.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s41204-021-00161-w</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2365-6379 |
ispartof | Nanotechnology for environmental engineering, 2021-12, Vol.6 (3), Article 67 |
issn | 2365-6379 2365-6387 |
language | eng |
recordid | cdi_proquest_journals_2580808037 |
source | SpringerLink Journals - AutoHoldings |
subjects | Acetic acid Cellulose acetate Cellulose acetate membranes Cellulose esters Desalination Earth and Environmental Science Earth Sciences Environment Environmental Science and Engineering Fluctuations Hydrogen bonding Membranes Nanomaterials Nanoparticles Nanotechnology and Microengineering Original Paper Osmosis Physical characteristics Physical properties Polymers Scanning electron microscopy Titanium Titanium dioxide X-ray diffraction |
title | Development of titanium dioxide incorporated ultrathin cellulose acetate membrane for enhanced forward osmosis performance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T00%3A40%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20titanium%20dioxide%20incorporated%20ultrathin%20cellulose%20acetate%20membrane%20for%20enhanced%20forward%20osmosis%20performance&rft.jtitle=Nanotechnology%20for%20environmental%20engineering&rft.au=Jain,%20Harshita&rft.date=2021-12-01&rft.volume=6&rft.issue=3&rft.artnum=67&rft.issn=2365-6379&rft.eissn=2365-6387&rft_id=info:doi/10.1007/s41204-021-00161-w&rft_dat=%3Cproquest_cross%3E2580808037%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580808037&rft_id=info:pmid/&rfr_iscdi=true |