Two-step RKN Direct Method for Special Second-order Initial and Boundary Value Problems

In this study, a class of direct numerical integrators for solving special second-order ordinary differential equations (ODEs) is proposed and studied. The method is multistage and multistep in nature. This class of integrators is called "two-step Runge-Kutta-Nystrom", denoted by TSRKN. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IAENG international journal of applied mathematics 2021-09, Vol.51 (3), p.1-9
Hauptverfasser: Abdulsalam, Athraa, Senu, Norazak, Majid, Zanariah Abdul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 3
container_start_page 1
container_title IAENG international journal of applied mathematics
container_volume 51
creator Abdulsalam, Athraa
Senu, Norazak
Majid, Zanariah Abdul
description In this study, a class of direct numerical integrators for solving special second-order ordinary differential equations (ODEs) is proposed and studied. The method is multistage and multistep in nature. This class of integrators is called "two-step Runge-Kutta-Nystrom", denoted by TSRKN. The direct approach to higher-order ODEs is desirable to avoid tedious computational work caused by converting the higherorder ODEs into the system of first-order equations. The order conditions for the TSRKN are derived using Taylors series expansion and according to the order conditions, a three-stage TSRKN method which is convergent of order four is constructed. The convergence analysis of the method is discussed and the performance of the newly derived method is compared with existing methods. The numerical results show the superiority of the TSRKN method in terms of number of function evaluations and demonstrate that the TSRKN can also be used to solve linear second-order boundary value problems (BVPs) since Runge-Kutta-Nystrom (RKN) approach is practically used to only solve higher-order initial value problems (IVPs) directly.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2580730960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580730960</sourcerecordid><originalsourceid>FETCH-LOGICAL-p98t-6c5a08b854e491150e23e06903724ee6b6dcba24723613b41223c230d50cd4503</originalsourceid><addsrcrecordid>eNo9jctKAzEYRoMoWGrfIeA6kMk9S6230nrBDrosufzFkXEyJhnEt1dRXH2HszjfAZo11jJirVGH_6zNMVqU0nkqhObGSDZDz-1HIqXCiB_Xd_iiyxAqvoX6kiLep4y3I4TO9XgLIQ2RpBwh49XQ1R_phojP0zRElz_xk-snwA85-R7eygk62ru-wOJv56i9umyXN2Rzf71anm3IaE0lKkhHjTdSgLBNIykwDlRZyjUTAMqrGLxjQjOuGu5FwxgPjNMoaYhCUj5Hp7_ZMaf3CUrdvaYpD9-POyYN1ZxaRfkXV11NLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580730960</pqid></control><display><type>article</type><title>Two-step RKN Direct Method for Special Second-order Initial and Boundary Value Problems</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Abdulsalam, Athraa ; Senu, Norazak ; Majid, Zanariah Abdul</creator><creatorcontrib>Abdulsalam, Athraa ; Senu, Norazak ; Majid, Zanariah Abdul</creatorcontrib><description>In this study, a class of direct numerical integrators for solving special second-order ordinary differential equations (ODEs) is proposed and studied. The method is multistage and multistep in nature. This class of integrators is called "two-step Runge-Kutta-Nystrom", denoted by TSRKN. The direct approach to higher-order ODEs is desirable to avoid tedious computational work caused by converting the higherorder ODEs into the system of first-order equations. The order conditions for the TSRKN are derived using Taylors series expansion and according to the order conditions, a three-stage TSRKN method which is convergent of order four is constructed. The convergence analysis of the method is discussed and the performance of the newly derived method is compared with existing methods. The numerical results show the superiority of the TSRKN method in terms of number of function evaluations and demonstrate that the TSRKN can also be used to solve linear second-order boundary value problems (BVPs) since Runge-Kutta-Nystrom (RKN) approach is practically used to only solve higher-order initial value problems (IVPs) directly.</description><identifier>ISSN: 1992-9978</identifier><identifier>EISSN: 1992-9986</identifier><language>eng</language><publisher>Hong Kong: International Association of Engineers</publisher><subject>Boundary conditions ; Boundary value problems ; Convergence ; Differential equations ; Integrators ; Linear equations ; Mathematical analysis ; Methods ; Numerical analysis ; Numerical methods ; Performance evaluation ; Runge-Kutta method ; Series expansion</subject><ispartof>IAENG international journal of applied mathematics, 2021-09, Vol.51 (3), p.1-9</ispartof><rights>2021. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the“License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Abdulsalam, Athraa</creatorcontrib><creatorcontrib>Senu, Norazak</creatorcontrib><creatorcontrib>Majid, Zanariah Abdul</creatorcontrib><title>Two-step RKN Direct Method for Special Second-order Initial and Boundary Value Problems</title><title>IAENG international journal of applied mathematics</title><description>In this study, a class of direct numerical integrators for solving special second-order ordinary differential equations (ODEs) is proposed and studied. The method is multistage and multistep in nature. This class of integrators is called "two-step Runge-Kutta-Nystrom", denoted by TSRKN. The direct approach to higher-order ODEs is desirable to avoid tedious computational work caused by converting the higherorder ODEs into the system of first-order equations. The order conditions for the TSRKN are derived using Taylors series expansion and according to the order conditions, a three-stage TSRKN method which is convergent of order four is constructed. The convergence analysis of the method is discussed and the performance of the newly derived method is compared with existing methods. The numerical results show the superiority of the TSRKN method in terms of number of function evaluations and demonstrate that the TSRKN can also be used to solve linear second-order boundary value problems (BVPs) since Runge-Kutta-Nystrom (RKN) approach is practically used to only solve higher-order initial value problems (IVPs) directly.</description><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Convergence</subject><subject>Differential equations</subject><subject>Integrators</subject><subject>Linear equations</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Numerical analysis</subject><subject>Numerical methods</subject><subject>Performance evaluation</subject><subject>Runge-Kutta method</subject><subject>Series expansion</subject><issn>1992-9978</issn><issn>1992-9986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNo9jctKAzEYRoMoWGrfIeA6kMk9S6230nrBDrosufzFkXEyJhnEt1dRXH2HszjfAZo11jJirVGH_6zNMVqU0nkqhObGSDZDz-1HIqXCiB_Xd_iiyxAqvoX6kiLep4y3I4TO9XgLIQ2RpBwh49XQ1R_phojP0zRElz_xk-snwA85-R7eygk62ru-wOJv56i9umyXN2Rzf71anm3IaE0lKkhHjTdSgLBNIykwDlRZyjUTAMqrGLxjQjOuGu5FwxgPjNMoaYhCUj5Hp7_ZMaf3CUrdvaYpD9-POyYN1ZxaRfkXV11NLw</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Abdulsalam, Athraa</creator><creator>Senu, Norazak</creator><creator>Majid, Zanariah Abdul</creator><general>International Association of Engineers</general><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210901</creationdate><title>Two-step RKN Direct Method for Special Second-order Initial and Boundary Value Problems</title><author>Abdulsalam, Athraa ; Senu, Norazak ; Majid, Zanariah Abdul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p98t-6c5a08b854e491150e23e06903724ee6b6dcba24723613b41223c230d50cd4503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Convergence</topic><topic>Differential equations</topic><topic>Integrators</topic><topic>Linear equations</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Numerical analysis</topic><topic>Numerical methods</topic><topic>Performance evaluation</topic><topic>Runge-Kutta method</topic><topic>Series expansion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdulsalam, Athraa</creatorcontrib><creatorcontrib>Senu, Norazak</creatorcontrib><creatorcontrib>Majid, Zanariah Abdul</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>IAENG international journal of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdulsalam, Athraa</au><au>Senu, Norazak</au><au>Majid, Zanariah Abdul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-step RKN Direct Method for Special Second-order Initial and Boundary Value Problems</atitle><jtitle>IAENG international journal of applied mathematics</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>51</volume><issue>3</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1992-9978</issn><eissn>1992-9986</eissn><abstract>In this study, a class of direct numerical integrators for solving special second-order ordinary differential equations (ODEs) is proposed and studied. The method is multistage and multistep in nature. This class of integrators is called "two-step Runge-Kutta-Nystrom", denoted by TSRKN. The direct approach to higher-order ODEs is desirable to avoid tedious computational work caused by converting the higherorder ODEs into the system of first-order equations. The order conditions for the TSRKN are derived using Taylors series expansion and according to the order conditions, a three-stage TSRKN method which is convergent of order four is constructed. The convergence analysis of the method is discussed and the performance of the newly derived method is compared with existing methods. The numerical results show the superiority of the TSRKN method in terms of number of function evaluations and demonstrate that the TSRKN can also be used to solve linear second-order boundary value problems (BVPs) since Runge-Kutta-Nystrom (RKN) approach is practically used to only solve higher-order initial value problems (IVPs) directly.</abstract><cop>Hong Kong</cop><pub>International Association of Engineers</pub><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1992-9978
ispartof IAENG international journal of applied mathematics, 2021-09, Vol.51 (3), p.1-9
issn 1992-9978
1992-9986
language eng
recordid cdi_proquest_journals_2580730960
source EZB-FREE-00999 freely available EZB journals
subjects Boundary conditions
Boundary value problems
Convergence
Differential equations
Integrators
Linear equations
Mathematical analysis
Methods
Numerical analysis
Numerical methods
Performance evaluation
Runge-Kutta method
Series expansion
title Two-step RKN Direct Method for Special Second-order Initial and Boundary Value Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A05%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-step%20RKN%20Direct%20Method%20for%20Special%20Second-order%20Initial%20and%20Boundary%20Value%20Problems&rft.jtitle=IAENG%20international%20journal%20of%20applied%20mathematics&rft.au=Abdulsalam,%20Athraa&rft.date=2021-09-01&rft.volume=51&rft.issue=3&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1992-9978&rft.eissn=1992-9986&rft_id=info:doi/&rft_dat=%3Cproquest%3E2580730960%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580730960&rft_id=info:pmid/&rfr_iscdi=true