Study on Defection Segmentation for Steel Surface Image Based on Image Edge Detection and Fisher Discriminant

A hybrid image segmentation method based on edge detection and Fisher discriminant is presented to detect defection, because signal-to-noise ratio of steel surface image is very low, and defection targets are small and their shape is irregular. Firstly, gradient operator detects the edge of defectio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2006-10, Vol.48 (1), p.364-368
Hauptverfasser: Guo, J H, Meng, X D, Xiong, M D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 368
container_issue 1
container_start_page 364
container_title Journal of physics. Conference series
container_volume 48
creator Guo, J H
Meng, X D
Xiong, M D
description A hybrid image segmentation method based on edge detection and Fisher discriminant is presented to detect defection, because signal-to-noise ratio of steel surface image is very low, and defection targets are small and their shape is irregular. Firstly, gradient operator detects the edge of defection image and gradient image is gotten, then grayscale of gradient image is stretched in order to enhance image contrast. Secondly, Fisher discriminant is adopted in order to find optimum threshold, meanwhile defection targets are segmented. Lastly, noise is filtered by morphology method. Defection is auto-segmented and located by this segmentation method. Experiment results show this method can detect week defection and real-time detect defection online.
doi_str_mv 10.1088/1742-6596/48/1/068
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2580538659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580538659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-c580e25d75018439e38ccb52c5b7d2601de274961d4dc6ac7cc009bfd48b88393</originalsourceid><addsrcrecordid>eNqNkDtPwzAUhS0EEqXwB5gsMTGE2nEezgh9QKVKDIHZcuybkqp5YDtD_30dUiEkGPBg32N959g6CN1S8kAJ5zOaRmGQxFkyi7yYkYSfocn35fmP-RJdWbsjhPmVTlCdu14fcNvgBZSgXOWnHLY1NE5-ibI1OHcAe5z3ppQK8LqWW8BP0oIefKNcar8twJ0iZKPxqrIfYPCisspUddXIxl2ji1LuLdyczil6Xy3f5i_B5vV5PX_cBIpl1AUq5gTCWKcxoTxiGTCuVBGHKi5SHSaEagjTKEuojrRKpEqVIiQrSh3xgnOWsSm6G3M70372YJ3Ytb1p_JMi9Nkx474KT4UjpUxrrYFSdP6j0hwEJWKoVQytiaE1EXkhfK3eFIymqu3-x9__wf_iRKdLdgQKj4TS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580538659</pqid></control><display><type>article</type><title>Study on Defection Segmentation for Steel Surface Image Based on Image Edge Detection and Fisher Discriminant</title><source>IOP_英国物理学会OA刊</source><creator>Guo, J H ; Meng, X D ; Xiong, M D</creator><creatorcontrib>Guo, J H ; Meng, X D ; Xiong, M D</creatorcontrib><description>A hybrid image segmentation method based on edge detection and Fisher discriminant is presented to detect defection, because signal-to-noise ratio of steel surface image is very low, and defection targets are small and their shape is irregular. Firstly, gradient operator detects the edge of defection image and gradient image is gotten, then grayscale of gradient image is stretched in order to enhance image contrast. Secondly, Fisher discriminant is adopted in order to find optimum threshold, meanwhile defection targets are segmented. Lastly, noise is filtered by morphology method. Defection is auto-segmented and located by this segmentation method. Experiment results show this method can detect week defection and real-time detect defection online.</description><identifier>ISSN: 1742-6596</identifier><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/48/1/068</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Edge detection ; Image contrast ; Image enhancement ; Image segmentation ; Morphology ; Physics ; Signal to noise ratio</subject><ispartof>Journal of physics. Conference series, 2006-10, Vol.48 (1), p.364-368</ispartof><rights>Copyright IOP Publishing Oct 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-c580e25d75018439e38ccb52c5b7d2601de274961d4dc6ac7cc009bfd48b88393</citedby><cites>FETCH-LOGICAL-c391t-c580e25d75018439e38ccb52c5b7d2601de274961d4dc6ac7cc009bfd48b88393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/48/1/068/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,1553,27628,27924,27925,53904,53931</link.rule.ids><linktorsrc>$$Uhttp://iopscience.iop.org/1742-6596/48/1/068$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Guo, J H</creatorcontrib><creatorcontrib>Meng, X D</creatorcontrib><creatorcontrib>Xiong, M D</creatorcontrib><title>Study on Defection Segmentation for Steel Surface Image Based on Image Edge Detection and Fisher Discriminant</title><title>Journal of physics. Conference series</title><description>A hybrid image segmentation method based on edge detection and Fisher discriminant is presented to detect defection, because signal-to-noise ratio of steel surface image is very low, and defection targets are small and their shape is irregular. Firstly, gradient operator detects the edge of defection image and gradient image is gotten, then grayscale of gradient image is stretched in order to enhance image contrast. Secondly, Fisher discriminant is adopted in order to find optimum threshold, meanwhile defection targets are segmented. Lastly, noise is filtered by morphology method. Defection is auto-segmented and located by this segmentation method. Experiment results show this method can detect week defection and real-time detect defection online.</description><subject>Edge detection</subject><subject>Image contrast</subject><subject>Image enhancement</subject><subject>Image segmentation</subject><subject>Morphology</subject><subject>Physics</subject><subject>Signal to noise ratio</subject><issn>1742-6596</issn><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkDtPwzAUhS0EEqXwB5gsMTGE2nEezgh9QKVKDIHZcuybkqp5YDtD_30dUiEkGPBg32N959g6CN1S8kAJ5zOaRmGQxFkyi7yYkYSfocn35fmP-RJdWbsjhPmVTlCdu14fcNvgBZSgXOWnHLY1NE5-ibI1OHcAe5z3ppQK8LqWW8BP0oIefKNcar8twJ0iZKPxqrIfYPCisspUddXIxl2ji1LuLdyczil6Xy3f5i_B5vV5PX_cBIpl1AUq5gTCWKcxoTxiGTCuVBGHKi5SHSaEagjTKEuojrRKpEqVIiQrSh3xgnOWsSm6G3M70372YJ3Ytb1p_JMi9Nkx474KT4UjpUxrrYFSdP6j0hwEJWKoVQytiaE1EXkhfK3eFIymqu3-x9__wf_iRKdLdgQKj4TS</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>Guo, J H</creator><creator>Meng, X D</creator><creator>Xiong, M D</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20061001</creationdate><title>Study on Defection Segmentation for Steel Surface Image Based on Image Edge Detection and Fisher Discriminant</title><author>Guo, J H ; Meng, X D ; Xiong, M D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-c580e25d75018439e38ccb52c5b7d2601de274961d4dc6ac7cc009bfd48b88393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Edge detection</topic><topic>Image contrast</topic><topic>Image enhancement</topic><topic>Image segmentation</topic><topic>Morphology</topic><topic>Physics</topic><topic>Signal to noise ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, J H</creatorcontrib><creatorcontrib>Meng, X D</creatorcontrib><creatorcontrib>Xiong, M D</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guo, J H</au><au>Meng, X D</au><au>Xiong, M D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on Defection Segmentation for Steel Surface Image Based on Image Edge Detection and Fisher Discriminant</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2006-10-01</date><risdate>2006</risdate><volume>48</volume><issue>1</issue><spage>364</spage><epage>368</epage><pages>364-368</pages><issn>1742-6596</issn><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>A hybrid image segmentation method based on edge detection and Fisher discriminant is presented to detect defection, because signal-to-noise ratio of steel surface image is very low, and defection targets are small and their shape is irregular. Firstly, gradient operator detects the edge of defection image and gradient image is gotten, then grayscale of gradient image is stretched in order to enhance image contrast. Secondly, Fisher discriminant is adopted in order to find optimum threshold, meanwhile defection targets are segmented. Lastly, noise is filtered by morphology method. Defection is auto-segmented and located by this segmentation method. Experiment results show this method can detect week defection and real-time detect defection online.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/48/1/068</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1742-6596
ispartof Journal of physics. Conference series, 2006-10, Vol.48 (1), p.364-368
issn 1742-6596
1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2580538659
source IOP_英国物理学会OA刊
subjects Edge detection
Image contrast
Image enhancement
Image segmentation
Morphology
Physics
Signal to noise ratio
title Study on Defection Segmentation for Steel Surface Image Based on Image Edge Detection and Fisher Discriminant
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A23%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20Defection%20Segmentation%20for%20Steel%20Surface%20Image%20Based%20on%20Image%20Edge%20Detection%20and%20Fisher%20Discriminant&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Guo,%20J%20H&rft.date=2006-10-01&rft.volume=48&rft.issue=1&rft.spage=364&rft.epage=368&rft.pages=364-368&rft.issn=1742-6596&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/48/1/068&rft_dat=%3Cproquest_O3W%3E2580538659%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580538659&rft_id=info:pmid/&rfr_iscdi=true