Study on Defection Segmentation for Steel Surface Image Based on Image Edge Detection and Fisher Discriminant
A hybrid image segmentation method based on edge detection and Fisher discriminant is presented to detect defection, because signal-to-noise ratio of steel surface image is very low, and defection targets are small and their shape is irregular. Firstly, gradient operator detects the edge of defectio...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2006-10, Vol.48 (1), p.364-368 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 368 |
---|---|
container_issue | 1 |
container_start_page | 364 |
container_title | Journal of physics. Conference series |
container_volume | 48 |
creator | Guo, J H Meng, X D Xiong, M D |
description | A hybrid image segmentation method based on edge detection and Fisher discriminant is presented to detect defection, because signal-to-noise ratio of steel surface image is very low, and defection targets are small and their shape is irregular. Firstly, gradient operator detects the edge of defection image and gradient image is gotten, then grayscale of gradient image is stretched in order to enhance image contrast. Secondly, Fisher discriminant is adopted in order to find optimum threshold, meanwhile defection targets are segmented. Lastly, noise is filtered by morphology method. Defection is auto-segmented and located by this segmentation method. Experiment results show this method can detect week defection and real-time detect defection online. |
doi_str_mv | 10.1088/1742-6596/48/1/068 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2580538659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580538659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-c580e25d75018439e38ccb52c5b7d2601de274961d4dc6ac7cc009bfd48b88393</originalsourceid><addsrcrecordid>eNqNkDtPwzAUhS0EEqXwB5gsMTGE2nEezgh9QKVKDIHZcuybkqp5YDtD_30dUiEkGPBg32N959g6CN1S8kAJ5zOaRmGQxFkyi7yYkYSfocn35fmP-RJdWbsjhPmVTlCdu14fcNvgBZSgXOWnHLY1NE5-ibI1OHcAe5z3ppQK8LqWW8BP0oIefKNcar8twJ0iZKPxqrIfYPCisspUddXIxl2ji1LuLdyczil6Xy3f5i_B5vV5PX_cBIpl1AUq5gTCWKcxoTxiGTCuVBGHKi5SHSaEagjTKEuojrRKpEqVIiQrSh3xgnOWsSm6G3M70372YJ3Ytb1p_JMi9Nkx474KT4UjpUxrrYFSdP6j0hwEJWKoVQytiaE1EXkhfK3eFIymqu3-x9__wf_iRKdLdgQKj4TS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580538659</pqid></control><display><type>article</type><title>Study on Defection Segmentation for Steel Surface Image Based on Image Edge Detection and Fisher Discriminant</title><source>IOP_英国物理学会OA刊</source><creator>Guo, J H ; Meng, X D ; Xiong, M D</creator><creatorcontrib>Guo, J H ; Meng, X D ; Xiong, M D</creatorcontrib><description>A hybrid image segmentation method based on edge detection and Fisher discriminant is presented to detect defection, because signal-to-noise ratio of steel surface image is very low, and defection targets are small and their shape is irregular. Firstly, gradient operator detects the edge of defection image and gradient image is gotten, then grayscale of gradient image is stretched in order to enhance image contrast. Secondly, Fisher discriminant is adopted in order to find optimum threshold, meanwhile defection targets are segmented. Lastly, noise is filtered by morphology method. Defection is auto-segmented and located by this segmentation method. Experiment results show this method can detect week defection and real-time detect defection online.</description><identifier>ISSN: 1742-6596</identifier><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/48/1/068</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Edge detection ; Image contrast ; Image enhancement ; Image segmentation ; Morphology ; Physics ; Signal to noise ratio</subject><ispartof>Journal of physics. Conference series, 2006-10, Vol.48 (1), p.364-368</ispartof><rights>Copyright IOP Publishing Oct 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-c580e25d75018439e38ccb52c5b7d2601de274961d4dc6ac7cc009bfd48b88393</citedby><cites>FETCH-LOGICAL-c391t-c580e25d75018439e38ccb52c5b7d2601de274961d4dc6ac7cc009bfd48b88393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/48/1/068/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,1553,27628,27924,27925,53904,53931</link.rule.ids><linktorsrc>$$Uhttp://iopscience.iop.org/1742-6596/48/1/068$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Guo, J H</creatorcontrib><creatorcontrib>Meng, X D</creatorcontrib><creatorcontrib>Xiong, M D</creatorcontrib><title>Study on Defection Segmentation for Steel Surface Image Based on Image Edge Detection and Fisher Discriminant</title><title>Journal of physics. Conference series</title><description>A hybrid image segmentation method based on edge detection and Fisher discriminant is presented to detect defection, because signal-to-noise ratio of steel surface image is very low, and defection targets are small and their shape is irregular. Firstly, gradient operator detects the edge of defection image and gradient image is gotten, then grayscale of gradient image is stretched in order to enhance image contrast. Secondly, Fisher discriminant is adopted in order to find optimum threshold, meanwhile defection targets are segmented. Lastly, noise is filtered by morphology method. Defection is auto-segmented and located by this segmentation method. Experiment results show this method can detect week defection and real-time detect defection online.</description><subject>Edge detection</subject><subject>Image contrast</subject><subject>Image enhancement</subject><subject>Image segmentation</subject><subject>Morphology</subject><subject>Physics</subject><subject>Signal to noise ratio</subject><issn>1742-6596</issn><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkDtPwzAUhS0EEqXwB5gsMTGE2nEezgh9QKVKDIHZcuybkqp5YDtD_30dUiEkGPBg32N959g6CN1S8kAJ5zOaRmGQxFkyi7yYkYSfocn35fmP-RJdWbsjhPmVTlCdu14fcNvgBZSgXOWnHLY1NE5-ibI1OHcAe5z3ppQK8LqWW8BP0oIefKNcar8twJ0iZKPxqrIfYPCisspUddXIxl2ji1LuLdyczil6Xy3f5i_B5vV5PX_cBIpl1AUq5gTCWKcxoTxiGTCuVBGHKi5SHSaEagjTKEuojrRKpEqVIiQrSh3xgnOWsSm6G3M70372YJ3Ytb1p_JMi9Nkx474KT4UjpUxrrYFSdP6j0hwEJWKoVQytiaE1EXkhfK3eFIymqu3-x9__wf_iRKdLdgQKj4TS</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>Guo, J H</creator><creator>Meng, X D</creator><creator>Xiong, M D</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20061001</creationdate><title>Study on Defection Segmentation for Steel Surface Image Based on Image Edge Detection and Fisher Discriminant</title><author>Guo, J H ; Meng, X D ; Xiong, M D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-c580e25d75018439e38ccb52c5b7d2601de274961d4dc6ac7cc009bfd48b88393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Edge detection</topic><topic>Image contrast</topic><topic>Image enhancement</topic><topic>Image segmentation</topic><topic>Morphology</topic><topic>Physics</topic><topic>Signal to noise ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, J H</creatorcontrib><creatorcontrib>Meng, X D</creatorcontrib><creatorcontrib>Xiong, M D</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guo, J H</au><au>Meng, X D</au><au>Xiong, M D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on Defection Segmentation for Steel Surface Image Based on Image Edge Detection and Fisher Discriminant</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2006-10-01</date><risdate>2006</risdate><volume>48</volume><issue>1</issue><spage>364</spage><epage>368</epage><pages>364-368</pages><issn>1742-6596</issn><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>A hybrid image segmentation method based on edge detection and Fisher discriminant is presented to detect defection, because signal-to-noise ratio of steel surface image is very low, and defection targets are small and their shape is irregular. Firstly, gradient operator detects the edge of defection image and gradient image is gotten, then grayscale of gradient image is stretched in order to enhance image contrast. Secondly, Fisher discriminant is adopted in order to find optimum threshold, meanwhile defection targets are segmented. Lastly, noise is filtered by morphology method. Defection is auto-segmented and located by this segmentation method. Experiment results show this method can detect week defection and real-time detect defection online.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/48/1/068</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1742-6596 |
ispartof | Journal of physics. Conference series, 2006-10, Vol.48 (1), p.364-368 |
issn | 1742-6596 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2580538659 |
source | IOP_英国物理学会OA刊 |
subjects | Edge detection Image contrast Image enhancement Image segmentation Morphology Physics Signal to noise ratio |
title | Study on Defection Segmentation for Steel Surface Image Based on Image Edge Detection and Fisher Discriminant |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A23%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20Defection%20Segmentation%20for%20Steel%20Surface%20Image%20Based%20on%20Image%20Edge%20Detection%20and%20Fisher%20Discriminant&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Guo,%20J%20H&rft.date=2006-10-01&rft.volume=48&rft.issue=1&rft.spage=364&rft.epage=368&rft.pages=364-368&rft.issn=1742-6596&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/48/1/068&rft_dat=%3Cproquest_O3W%3E2580538659%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580538659&rft_id=info:pmid/&rfr_iscdi=true |