An all-Mach, low-dissipation strategy for simulating multiphase flows
Liquid-gas flows that involve compressibility effects occur in many engineering contexts, and high-fidelity simulations can unlock further insights and developments. Introducing several numerical innovations, this work details a collocated, volume-of-fluid, finite volume flow solver that is robust,...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2021-11, Vol.445, p.110602, Article 110602 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 110602 |
container_title | Journal of computational physics |
container_volume | 445 |
creator | Kuhn, Michael B. Desjardins, Olivier |
description | Liquid-gas flows that involve compressibility effects occur in many engineering contexts, and high-fidelity simulations can unlock further insights and developments. Introducing several numerical innovations, this work details a collocated, volume-of-fluid, finite volume flow solver that is robust, conservative, and capable of simulating flows with shocks, liquid-gas interfaces, and turbulence. A novel hybrid advection scheme provides stability while minimizing dissipation. An unsplit semi-Lagrangian method provides the robustness and precision to handle discontinuities in the flow, and a centered scheme eliminates numerical kinetic energy dissipation elsewhere, allowing accurate simulation of turbulence. A pressure projection scheme makes multiphase compressible simulations much less costly, and formulating this projection as incremental reduces numerical dissipation further. Local relaxation to mechanical equilibrium is used to properly solve for the pressure and energy fields in multiphase contexts. Within this framework, a consistent methodology for implementing multiphase pressure projection is derived, including surface tension. The complete algorithm is validated with benchmark tests in one, two, and three dimensions that evaluate the accuracy and stability of the approach in predicting compressible effects, turbulent dissipation, interface dynamics, and more through comparisons with theory, experiments, and reference simulations. Finally, the utility of the numerical approach is demonstrated by simulating an atomizing liquid jet in a Mach 2 crossflow.
•Unsplit semi-Lagrangian scheme robustly advects shocks and phase interfaces.•Hybrid advection also uses centered scheme to minimize numerical dissipation.•All-Mach projection solves multiphase flows consistently via pressure relaxation.•Predictor corrector algorithm enables accurate simulation of turbulence.•Simulation of liquid jet in supersonic crossflow closely matches experiments. |
doi_str_mv | 10.1016/j.jcp.2021.110602 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2580352589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999121004976</els_id><sourcerecordid>2580352589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-872f858f456ced01bb936443dd7c7e187b7406611b273112edd0747802feafaf3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9gisZJw53zYEVNVlQ-piAVmy3Hs1lGaBDsF9d_jEiYGFp_lu-es9yHkGiFBwOKuSRo1JBQoJohQAD0hM4QSYsqwOCUzCJ24LEs8JxfeNwDA84zPyGrRRbJt4xeptrdR23_FtfXeDnK0fRf50clRbw6R6V3k7W7fhvduE4XLaIet9DoygfGX5MzI1uur3zon7w-rt-VTvH59fF4u1rFKCz7GnFHDc26yvFC6BqyqMi2yLK1rpphGziqWQVEgVpSliFTXNbCMcaBGSyNNOic3097B9R977UfR9HvXhS8FzTmkeTjLMIXTlHK9904bMTi7k-4gEMTRlmhEsCWOtsRkKzDsD6Ps-CMhKLDtv-T9ROoQ_NNqJ7yyugsBrdNqFHVv_6G_Adkxg3Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580352589</pqid></control><display><type>article</type><title>An all-Mach, low-dissipation strategy for simulating multiphase flows</title><source>Elsevier ScienceDirect Journals</source><creator>Kuhn, Michael B. ; Desjardins, Olivier</creator><creatorcontrib>Kuhn, Michael B. ; Desjardins, Olivier</creatorcontrib><description>Liquid-gas flows that involve compressibility effects occur in many engineering contexts, and high-fidelity simulations can unlock further insights and developments. Introducing several numerical innovations, this work details a collocated, volume-of-fluid, finite volume flow solver that is robust, conservative, and capable of simulating flows with shocks, liquid-gas interfaces, and turbulence. A novel hybrid advection scheme provides stability while minimizing dissipation. An unsplit semi-Lagrangian method provides the robustness and precision to handle discontinuities in the flow, and a centered scheme eliminates numerical kinetic energy dissipation elsewhere, allowing accurate simulation of turbulence. A pressure projection scheme makes multiphase compressible simulations much less costly, and formulating this projection as incremental reduces numerical dissipation further. Local relaxation to mechanical equilibrium is used to properly solve for the pressure and energy fields in multiphase contexts. Within this framework, a consistent methodology for implementing multiphase pressure projection is derived, including surface tension. The complete algorithm is validated with benchmark tests in one, two, and three dimensions that evaluate the accuracy and stability of the approach in predicting compressible effects, turbulent dissipation, interface dynamics, and more through comparisons with theory, experiments, and reference simulations. Finally, the utility of the numerical approach is demonstrated by simulating an atomizing liquid jet in a Mach 2 crossflow.
•Unsplit semi-Lagrangian scheme robustly advects shocks and phase interfaces.•Hybrid advection also uses centered scheme to minimize numerical dissipation.•All-Mach projection solves multiphase flows consistently via pressure relaxation.•Predictor corrector algorithm enables accurate simulation of turbulence.•Simulation of liquid jet in supersonic crossflow closely matches experiments.</description><identifier>ISSN: 0021-9991</identifier><identifier>ISSN: 1090-2716</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2021.110602</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Algorithms ; All-Mach projection ; Atomizing ; Compressibility effects ; Computational physics ; Cross flow ; Dynamic stability ; Energy dissipation ; Flow simulation ; Fluid flow ; Forecasting ; Gas flow ; Interface stability ; Kinetic energy ; Low dissipation ; Multiphase flow ; Multiphase flows ; Numerical dissipation ; Primary atomization ; Robustness (mathematics) ; Semi-Lagrangian transport ; Simulation ; Stability analysis ; Surface tension ; Turbulence ; Volume-of-fluid</subject><ispartof>Journal of computational physics, 2021-11, Vol.445, p.110602, Article 110602</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Nov 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-872f858f456ced01bb936443dd7c7e187b7406611b273112edd0747802feafaf3</citedby><cites>FETCH-LOGICAL-c368t-872f858f456ced01bb936443dd7c7e187b7406611b273112edd0747802feafaf3</cites><orcidid>0000-0002-5506-7777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2021.110602$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Kuhn, Michael B.</creatorcontrib><creatorcontrib>Desjardins, Olivier</creatorcontrib><title>An all-Mach, low-dissipation strategy for simulating multiphase flows</title><title>Journal of computational physics</title><description>Liquid-gas flows that involve compressibility effects occur in many engineering contexts, and high-fidelity simulations can unlock further insights and developments. Introducing several numerical innovations, this work details a collocated, volume-of-fluid, finite volume flow solver that is robust, conservative, and capable of simulating flows with shocks, liquid-gas interfaces, and turbulence. A novel hybrid advection scheme provides stability while minimizing dissipation. An unsplit semi-Lagrangian method provides the robustness and precision to handle discontinuities in the flow, and a centered scheme eliminates numerical kinetic energy dissipation elsewhere, allowing accurate simulation of turbulence. A pressure projection scheme makes multiphase compressible simulations much less costly, and formulating this projection as incremental reduces numerical dissipation further. Local relaxation to mechanical equilibrium is used to properly solve for the pressure and energy fields in multiphase contexts. Within this framework, a consistent methodology for implementing multiphase pressure projection is derived, including surface tension. The complete algorithm is validated with benchmark tests in one, two, and three dimensions that evaluate the accuracy and stability of the approach in predicting compressible effects, turbulent dissipation, interface dynamics, and more through comparisons with theory, experiments, and reference simulations. Finally, the utility of the numerical approach is demonstrated by simulating an atomizing liquid jet in a Mach 2 crossflow.
•Unsplit semi-Lagrangian scheme robustly advects shocks and phase interfaces.•Hybrid advection also uses centered scheme to minimize numerical dissipation.•All-Mach projection solves multiphase flows consistently via pressure relaxation.•Predictor corrector algorithm enables accurate simulation of turbulence.•Simulation of liquid jet in supersonic crossflow closely matches experiments.</description><subject>Algorithms</subject><subject>All-Mach projection</subject><subject>Atomizing</subject><subject>Compressibility effects</subject><subject>Computational physics</subject><subject>Cross flow</subject><subject>Dynamic stability</subject><subject>Energy dissipation</subject><subject>Flow simulation</subject><subject>Fluid flow</subject><subject>Forecasting</subject><subject>Gas flow</subject><subject>Interface stability</subject><subject>Kinetic energy</subject><subject>Low dissipation</subject><subject>Multiphase flow</subject><subject>Multiphase flows</subject><subject>Numerical dissipation</subject><subject>Primary atomization</subject><subject>Robustness (mathematics)</subject><subject>Semi-Lagrangian transport</subject><subject>Simulation</subject><subject>Stability analysis</subject><subject>Surface tension</subject><subject>Turbulence</subject><subject>Volume-of-fluid</subject><issn>0021-9991</issn><issn>1090-2716</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9gisZJw53zYEVNVlQ-piAVmy3Hs1lGaBDsF9d_jEiYGFp_lu-es9yHkGiFBwOKuSRo1JBQoJohQAD0hM4QSYsqwOCUzCJ24LEs8JxfeNwDA84zPyGrRRbJt4xeptrdR23_FtfXeDnK0fRf50clRbw6R6V3k7W7fhvduE4XLaIet9DoygfGX5MzI1uur3zon7w-rt-VTvH59fF4u1rFKCz7GnFHDc26yvFC6BqyqMi2yLK1rpphGziqWQVEgVpSliFTXNbCMcaBGSyNNOic3097B9R977UfR9HvXhS8FzTmkeTjLMIXTlHK9904bMTi7k-4gEMTRlmhEsCWOtsRkKzDsD6Ps-CMhKLDtv-T9ROoQ_NNqJ7yyugsBrdNqFHVv_6G_Adkxg3Y</recordid><startdate>20211115</startdate><enddate>20211115</enddate><creator>Kuhn, Michael B.</creator><creator>Desjardins, Olivier</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5506-7777</orcidid></search><sort><creationdate>20211115</creationdate><title>An all-Mach, low-dissipation strategy for simulating multiphase flows</title><author>Kuhn, Michael B. ; Desjardins, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-872f858f456ced01bb936443dd7c7e187b7406611b273112edd0747802feafaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>All-Mach projection</topic><topic>Atomizing</topic><topic>Compressibility effects</topic><topic>Computational physics</topic><topic>Cross flow</topic><topic>Dynamic stability</topic><topic>Energy dissipation</topic><topic>Flow simulation</topic><topic>Fluid flow</topic><topic>Forecasting</topic><topic>Gas flow</topic><topic>Interface stability</topic><topic>Kinetic energy</topic><topic>Low dissipation</topic><topic>Multiphase flow</topic><topic>Multiphase flows</topic><topic>Numerical dissipation</topic><topic>Primary atomization</topic><topic>Robustness (mathematics)</topic><topic>Semi-Lagrangian transport</topic><topic>Simulation</topic><topic>Stability analysis</topic><topic>Surface tension</topic><topic>Turbulence</topic><topic>Volume-of-fluid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuhn, Michael B.</creatorcontrib><creatorcontrib>Desjardins, Olivier</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuhn, Michael B.</au><au>Desjardins, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An all-Mach, low-dissipation strategy for simulating multiphase flows</atitle><jtitle>Journal of computational physics</jtitle><date>2021-11-15</date><risdate>2021</risdate><volume>445</volume><spage>110602</spage><pages>110602-</pages><artnum>110602</artnum><issn>0021-9991</issn><issn>1090-2716</issn><eissn>1090-2716</eissn><abstract>Liquid-gas flows that involve compressibility effects occur in many engineering contexts, and high-fidelity simulations can unlock further insights and developments. Introducing several numerical innovations, this work details a collocated, volume-of-fluid, finite volume flow solver that is robust, conservative, and capable of simulating flows with shocks, liquid-gas interfaces, and turbulence. A novel hybrid advection scheme provides stability while minimizing dissipation. An unsplit semi-Lagrangian method provides the robustness and precision to handle discontinuities in the flow, and a centered scheme eliminates numerical kinetic energy dissipation elsewhere, allowing accurate simulation of turbulence. A pressure projection scheme makes multiphase compressible simulations much less costly, and formulating this projection as incremental reduces numerical dissipation further. Local relaxation to mechanical equilibrium is used to properly solve for the pressure and energy fields in multiphase contexts. Within this framework, a consistent methodology for implementing multiphase pressure projection is derived, including surface tension. The complete algorithm is validated with benchmark tests in one, two, and three dimensions that evaluate the accuracy and stability of the approach in predicting compressible effects, turbulent dissipation, interface dynamics, and more through comparisons with theory, experiments, and reference simulations. Finally, the utility of the numerical approach is demonstrated by simulating an atomizing liquid jet in a Mach 2 crossflow.
•Unsplit semi-Lagrangian scheme robustly advects shocks and phase interfaces.•Hybrid advection also uses centered scheme to minimize numerical dissipation.•All-Mach projection solves multiphase flows consistently via pressure relaxation.•Predictor corrector algorithm enables accurate simulation of turbulence.•Simulation of liquid jet in supersonic crossflow closely matches experiments.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2021.110602</doi><orcidid>https://orcid.org/0000-0002-5506-7777</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2021-11, Vol.445, p.110602, Article 110602 |
issn | 0021-9991 1090-2716 1090-2716 |
language | eng |
recordid | cdi_proquest_journals_2580352589 |
source | Elsevier ScienceDirect Journals |
subjects | Algorithms All-Mach projection Atomizing Compressibility effects Computational physics Cross flow Dynamic stability Energy dissipation Flow simulation Fluid flow Forecasting Gas flow Interface stability Kinetic energy Low dissipation Multiphase flow Multiphase flows Numerical dissipation Primary atomization Robustness (mathematics) Semi-Lagrangian transport Simulation Stability analysis Surface tension Turbulence Volume-of-fluid |
title | An all-Mach, low-dissipation strategy for simulating multiphase flows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A19%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20all-Mach,%20low-dissipation%20strategy%20for%20simulating%20multiphase%20flows&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Kuhn,%20Michael%20B.&rft.date=2021-11-15&rft.volume=445&rft.spage=110602&rft.pages=110602-&rft.artnum=110602&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2021.110602&rft_dat=%3Cproquest_cross%3E2580352589%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580352589&rft_id=info:pmid/&rft_els_id=S0021999121004976&rfr_iscdi=true |