An all-Mach, low-dissipation strategy for simulating multiphase flows

Liquid-gas flows that involve compressibility effects occur in many engineering contexts, and high-fidelity simulations can unlock further insights and developments. Introducing several numerical innovations, this work details a collocated, volume-of-fluid, finite volume flow solver that is robust,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2021-11, Vol.445, p.110602, Article 110602
Hauptverfasser: Kuhn, Michael B., Desjardins, Olivier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 110602
container_title Journal of computational physics
container_volume 445
creator Kuhn, Michael B.
Desjardins, Olivier
description Liquid-gas flows that involve compressibility effects occur in many engineering contexts, and high-fidelity simulations can unlock further insights and developments. Introducing several numerical innovations, this work details a collocated, volume-of-fluid, finite volume flow solver that is robust, conservative, and capable of simulating flows with shocks, liquid-gas interfaces, and turbulence. A novel hybrid advection scheme provides stability while minimizing dissipation. An unsplit semi-Lagrangian method provides the robustness and precision to handle discontinuities in the flow, and a centered scheme eliminates numerical kinetic energy dissipation elsewhere, allowing accurate simulation of turbulence. A pressure projection scheme makes multiphase compressible simulations much less costly, and formulating this projection as incremental reduces numerical dissipation further. Local relaxation to mechanical equilibrium is used to properly solve for the pressure and energy fields in multiphase contexts. Within this framework, a consistent methodology for implementing multiphase pressure projection is derived, including surface tension. The complete algorithm is validated with benchmark tests in one, two, and three dimensions that evaluate the accuracy and stability of the approach in predicting compressible effects, turbulent dissipation, interface dynamics, and more through comparisons with theory, experiments, and reference simulations. Finally, the utility of the numerical approach is demonstrated by simulating an atomizing liquid jet in a Mach 2 crossflow. •Unsplit semi-Lagrangian scheme robustly advects shocks and phase interfaces.•Hybrid advection also uses centered scheme to minimize numerical dissipation.•All-Mach projection solves multiphase flows consistently via pressure relaxation.•Predictor corrector algorithm enables accurate simulation of turbulence.•Simulation of liquid jet in supersonic crossflow closely matches experiments.
doi_str_mv 10.1016/j.jcp.2021.110602
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2580352589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999121004976</els_id><sourcerecordid>2580352589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-872f858f456ced01bb936443dd7c7e187b7406611b273112edd0747802feafaf3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9gisZJw53zYEVNVlQ-piAVmy3Hs1lGaBDsF9d_jEiYGFp_lu-es9yHkGiFBwOKuSRo1JBQoJohQAD0hM4QSYsqwOCUzCJ24LEs8JxfeNwDA84zPyGrRRbJt4xeptrdR23_FtfXeDnK0fRf50clRbw6R6V3k7W7fhvduE4XLaIet9DoygfGX5MzI1uur3zon7w-rt-VTvH59fF4u1rFKCz7GnFHDc26yvFC6BqyqMi2yLK1rpphGziqWQVEgVpSliFTXNbCMcaBGSyNNOic3097B9R977UfR9HvXhS8FzTmkeTjLMIXTlHK9904bMTi7k-4gEMTRlmhEsCWOtsRkKzDsD6Ps-CMhKLDtv-T9ROoQ_NNqJ7yyugsBrdNqFHVv_6G_Adkxg3Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580352589</pqid></control><display><type>article</type><title>An all-Mach, low-dissipation strategy for simulating multiphase flows</title><source>Elsevier ScienceDirect Journals</source><creator>Kuhn, Michael B. ; Desjardins, Olivier</creator><creatorcontrib>Kuhn, Michael B. ; Desjardins, Olivier</creatorcontrib><description>Liquid-gas flows that involve compressibility effects occur in many engineering contexts, and high-fidelity simulations can unlock further insights and developments. Introducing several numerical innovations, this work details a collocated, volume-of-fluid, finite volume flow solver that is robust, conservative, and capable of simulating flows with shocks, liquid-gas interfaces, and turbulence. A novel hybrid advection scheme provides stability while minimizing dissipation. An unsplit semi-Lagrangian method provides the robustness and precision to handle discontinuities in the flow, and a centered scheme eliminates numerical kinetic energy dissipation elsewhere, allowing accurate simulation of turbulence. A pressure projection scheme makes multiphase compressible simulations much less costly, and formulating this projection as incremental reduces numerical dissipation further. Local relaxation to mechanical equilibrium is used to properly solve for the pressure and energy fields in multiphase contexts. Within this framework, a consistent methodology for implementing multiphase pressure projection is derived, including surface tension. The complete algorithm is validated with benchmark tests in one, two, and three dimensions that evaluate the accuracy and stability of the approach in predicting compressible effects, turbulent dissipation, interface dynamics, and more through comparisons with theory, experiments, and reference simulations. Finally, the utility of the numerical approach is demonstrated by simulating an atomizing liquid jet in a Mach 2 crossflow. •Unsplit semi-Lagrangian scheme robustly advects shocks and phase interfaces.•Hybrid advection also uses centered scheme to minimize numerical dissipation.•All-Mach projection solves multiphase flows consistently via pressure relaxation.•Predictor corrector algorithm enables accurate simulation of turbulence.•Simulation of liquid jet in supersonic crossflow closely matches experiments.</description><identifier>ISSN: 0021-9991</identifier><identifier>ISSN: 1090-2716</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2021.110602</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Algorithms ; All-Mach projection ; Atomizing ; Compressibility effects ; Computational physics ; Cross flow ; Dynamic stability ; Energy dissipation ; Flow simulation ; Fluid flow ; Forecasting ; Gas flow ; Interface stability ; Kinetic energy ; Low dissipation ; Multiphase flow ; Multiphase flows ; Numerical dissipation ; Primary atomization ; Robustness (mathematics) ; Semi-Lagrangian transport ; Simulation ; Stability analysis ; Surface tension ; Turbulence ; Volume-of-fluid</subject><ispartof>Journal of computational physics, 2021-11, Vol.445, p.110602, Article 110602</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Nov 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-872f858f456ced01bb936443dd7c7e187b7406611b273112edd0747802feafaf3</citedby><cites>FETCH-LOGICAL-c368t-872f858f456ced01bb936443dd7c7e187b7406611b273112edd0747802feafaf3</cites><orcidid>0000-0002-5506-7777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2021.110602$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Kuhn, Michael B.</creatorcontrib><creatorcontrib>Desjardins, Olivier</creatorcontrib><title>An all-Mach, low-dissipation strategy for simulating multiphase flows</title><title>Journal of computational physics</title><description>Liquid-gas flows that involve compressibility effects occur in many engineering contexts, and high-fidelity simulations can unlock further insights and developments. Introducing several numerical innovations, this work details a collocated, volume-of-fluid, finite volume flow solver that is robust, conservative, and capable of simulating flows with shocks, liquid-gas interfaces, and turbulence. A novel hybrid advection scheme provides stability while minimizing dissipation. An unsplit semi-Lagrangian method provides the robustness and precision to handle discontinuities in the flow, and a centered scheme eliminates numerical kinetic energy dissipation elsewhere, allowing accurate simulation of turbulence. A pressure projection scheme makes multiphase compressible simulations much less costly, and formulating this projection as incremental reduces numerical dissipation further. Local relaxation to mechanical equilibrium is used to properly solve for the pressure and energy fields in multiphase contexts. Within this framework, a consistent methodology for implementing multiphase pressure projection is derived, including surface tension. The complete algorithm is validated with benchmark tests in one, two, and three dimensions that evaluate the accuracy and stability of the approach in predicting compressible effects, turbulent dissipation, interface dynamics, and more through comparisons with theory, experiments, and reference simulations. Finally, the utility of the numerical approach is demonstrated by simulating an atomizing liquid jet in a Mach 2 crossflow. •Unsplit semi-Lagrangian scheme robustly advects shocks and phase interfaces.•Hybrid advection also uses centered scheme to minimize numerical dissipation.•All-Mach projection solves multiphase flows consistently via pressure relaxation.•Predictor corrector algorithm enables accurate simulation of turbulence.•Simulation of liquid jet in supersonic crossflow closely matches experiments.</description><subject>Algorithms</subject><subject>All-Mach projection</subject><subject>Atomizing</subject><subject>Compressibility effects</subject><subject>Computational physics</subject><subject>Cross flow</subject><subject>Dynamic stability</subject><subject>Energy dissipation</subject><subject>Flow simulation</subject><subject>Fluid flow</subject><subject>Forecasting</subject><subject>Gas flow</subject><subject>Interface stability</subject><subject>Kinetic energy</subject><subject>Low dissipation</subject><subject>Multiphase flow</subject><subject>Multiphase flows</subject><subject>Numerical dissipation</subject><subject>Primary atomization</subject><subject>Robustness (mathematics)</subject><subject>Semi-Lagrangian transport</subject><subject>Simulation</subject><subject>Stability analysis</subject><subject>Surface tension</subject><subject>Turbulence</subject><subject>Volume-of-fluid</subject><issn>0021-9991</issn><issn>1090-2716</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9gisZJw53zYEVNVlQ-piAVmy3Hs1lGaBDsF9d_jEiYGFp_lu-es9yHkGiFBwOKuSRo1JBQoJohQAD0hM4QSYsqwOCUzCJ24LEs8JxfeNwDA84zPyGrRRbJt4xeptrdR23_FtfXeDnK0fRf50clRbw6R6V3k7W7fhvduE4XLaIet9DoygfGX5MzI1uur3zon7w-rt-VTvH59fF4u1rFKCz7GnFHDc26yvFC6BqyqMi2yLK1rpphGziqWQVEgVpSliFTXNbCMcaBGSyNNOic3097B9R977UfR9HvXhS8FzTmkeTjLMIXTlHK9904bMTi7k-4gEMTRlmhEsCWOtsRkKzDsD6Ps-CMhKLDtv-T9ROoQ_NNqJ7yyugsBrdNqFHVv_6G_Adkxg3Y</recordid><startdate>20211115</startdate><enddate>20211115</enddate><creator>Kuhn, Michael B.</creator><creator>Desjardins, Olivier</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5506-7777</orcidid></search><sort><creationdate>20211115</creationdate><title>An all-Mach, low-dissipation strategy for simulating multiphase flows</title><author>Kuhn, Michael B. ; Desjardins, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-872f858f456ced01bb936443dd7c7e187b7406611b273112edd0747802feafaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>All-Mach projection</topic><topic>Atomizing</topic><topic>Compressibility effects</topic><topic>Computational physics</topic><topic>Cross flow</topic><topic>Dynamic stability</topic><topic>Energy dissipation</topic><topic>Flow simulation</topic><topic>Fluid flow</topic><topic>Forecasting</topic><topic>Gas flow</topic><topic>Interface stability</topic><topic>Kinetic energy</topic><topic>Low dissipation</topic><topic>Multiphase flow</topic><topic>Multiphase flows</topic><topic>Numerical dissipation</topic><topic>Primary atomization</topic><topic>Robustness (mathematics)</topic><topic>Semi-Lagrangian transport</topic><topic>Simulation</topic><topic>Stability analysis</topic><topic>Surface tension</topic><topic>Turbulence</topic><topic>Volume-of-fluid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuhn, Michael B.</creatorcontrib><creatorcontrib>Desjardins, Olivier</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuhn, Michael B.</au><au>Desjardins, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An all-Mach, low-dissipation strategy for simulating multiphase flows</atitle><jtitle>Journal of computational physics</jtitle><date>2021-11-15</date><risdate>2021</risdate><volume>445</volume><spage>110602</spage><pages>110602-</pages><artnum>110602</artnum><issn>0021-9991</issn><issn>1090-2716</issn><eissn>1090-2716</eissn><abstract>Liquid-gas flows that involve compressibility effects occur in many engineering contexts, and high-fidelity simulations can unlock further insights and developments. Introducing several numerical innovations, this work details a collocated, volume-of-fluid, finite volume flow solver that is robust, conservative, and capable of simulating flows with shocks, liquid-gas interfaces, and turbulence. A novel hybrid advection scheme provides stability while minimizing dissipation. An unsplit semi-Lagrangian method provides the robustness and precision to handle discontinuities in the flow, and a centered scheme eliminates numerical kinetic energy dissipation elsewhere, allowing accurate simulation of turbulence. A pressure projection scheme makes multiphase compressible simulations much less costly, and formulating this projection as incremental reduces numerical dissipation further. Local relaxation to mechanical equilibrium is used to properly solve for the pressure and energy fields in multiphase contexts. Within this framework, a consistent methodology for implementing multiphase pressure projection is derived, including surface tension. The complete algorithm is validated with benchmark tests in one, two, and three dimensions that evaluate the accuracy and stability of the approach in predicting compressible effects, turbulent dissipation, interface dynamics, and more through comparisons with theory, experiments, and reference simulations. Finally, the utility of the numerical approach is demonstrated by simulating an atomizing liquid jet in a Mach 2 crossflow. •Unsplit semi-Lagrangian scheme robustly advects shocks and phase interfaces.•Hybrid advection also uses centered scheme to minimize numerical dissipation.•All-Mach projection solves multiphase flows consistently via pressure relaxation.•Predictor corrector algorithm enables accurate simulation of turbulence.•Simulation of liquid jet in supersonic crossflow closely matches experiments.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2021.110602</doi><orcidid>https://orcid.org/0000-0002-5506-7777</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2021-11, Vol.445, p.110602, Article 110602
issn 0021-9991
1090-2716
1090-2716
language eng
recordid cdi_proquest_journals_2580352589
source Elsevier ScienceDirect Journals
subjects Algorithms
All-Mach projection
Atomizing
Compressibility effects
Computational physics
Cross flow
Dynamic stability
Energy dissipation
Flow simulation
Fluid flow
Forecasting
Gas flow
Interface stability
Kinetic energy
Low dissipation
Multiphase flow
Multiphase flows
Numerical dissipation
Primary atomization
Robustness (mathematics)
Semi-Lagrangian transport
Simulation
Stability analysis
Surface tension
Turbulence
Volume-of-fluid
title An all-Mach, low-dissipation strategy for simulating multiphase flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A19%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20all-Mach,%20low-dissipation%20strategy%20for%20simulating%20multiphase%20flows&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Kuhn,%20Michael%20B.&rft.date=2021-11-15&rft.volume=445&rft.spage=110602&rft.pages=110602-&rft.artnum=110602&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2021.110602&rft_dat=%3Cproquest_cross%3E2580352589%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580352589&rft_id=info:pmid/&rft_els_id=S0021999121004976&rfr_iscdi=true