Smooth Analysis-Suitable Parameterization Based on a Weighted and Modified Liao Functional

Analysis-suitable parameterization is a fundamental problem in IGA (IsoGeometric Analysis) implementation which significantly influences computational accuracy and efficiency. This paper proposes a variational framework to address the problem of producing a smooth parameterization of a computational...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer aided design 2021-11, Vol.140, p.103079, Article 103079
Hauptverfasser: Wang, Xu, Ma, Weiyin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 103079
container_title Computer aided design
container_volume 140
creator Wang, Xu
Ma, Weiyin
description Analysis-suitable parameterization is a fundamental problem in IGA (IsoGeometric Analysis) implementation which significantly influences computational accuracy and efficiency. This paper proposes a variational framework to address the problem of producing a smooth parameterization of a computational domain represented in B-spline form. In order to control both angle and area distortions, a weighted and modified Liao functional is constructed. The weighting function is a modification of the Gaussian function used to penalize area distortion while a modified Liao functional is used to minimize the angle distortion. A Jacobian regularization scheme is adopted so that invalid initial solutions are acceptable and untangling of folding parameterization is made possible. An L-BFGS algorithm is applied to solve this unconstrained optimization problem. Experimental results show that the proposed objective functional could effectively untangle folding parameterization and further produce better results with lower area and angle distortions compared with other functionals and state-of-the-art parameterization techniques. [Display omitted] •Present an unconstrained optimization for smooth analysis-suitable parameterization.•The weighted and modified Liao functional minimizes angle and area distortions.•An L-BFGS algorithm is applied to solve this unconstrained optimization problem.•A Jacobian regularization is used to avoid the need of a non-folding initial solution.•The optimization produces smooth parameterization suitable for isogeometric analysis.
doi_str_mv 10.1016/j.cad.2021.103079
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2580352175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010448521000907</els_id><sourcerecordid>2580352175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-edc2098c29562476ddf10ed015d1c85c9bd808bd85981103d49f3b60f50de39f3</originalsourceid><addsrcrecordid>eNp9UMFKAzEUDKJgrX6AtwXPW1-ym90ET7VYFSoKVQQvIU2yNku7qUlWqF9vynr28t4MzDzmDUKXGCYYcHXdTpTUEwIEJ15AzY_QCLOa56Ri9BiNADDkZcnoKToLoQVIyoKP0Mdy61xcZ9NObvbBhnzZ2yhXG5O9SC-3Jhpvf2S0rstuZTA6S0Bm78Z-rmNistPZk9O2sYksrHTZvO_UQS435-ikkZtgLv72GL3N715nD_ni-f5xNl3kqiA05kYrApwpwmlFyrrSusFgNGCqsWJU8ZVmwNKgnOH0my55U6wqaChoUyQ8RlfD3Z13X70JUbSu9ylAEIQyKCjBNU0qPKiUdyF404idt1vp9wKDOFQoWpEqFIcKxVBh8twMHpPif1vjRVDWdMpo642KQjv7j_sX6F54bQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580352175</pqid></control><display><type>article</type><title>Smooth Analysis-Suitable Parameterization Based on a Weighted and Modified Liao Functional</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Xu ; Ma, Weiyin</creator><creatorcontrib>Wang, Xu ; Ma, Weiyin</creatorcontrib><description>Analysis-suitable parameterization is a fundamental problem in IGA (IsoGeometric Analysis) implementation which significantly influences computational accuracy and efficiency. This paper proposes a variational framework to address the problem of producing a smooth parameterization of a computational domain represented in B-spline form. In order to control both angle and area distortions, a weighted and modified Liao functional is constructed. The weighting function is a modification of the Gaussian function used to penalize area distortion while a modified Liao functional is used to minimize the angle distortion. A Jacobian regularization scheme is adopted so that invalid initial solutions are acceptable and untangling of folding parameterization is made possible. An L-BFGS algorithm is applied to solve this unconstrained optimization problem. Experimental results show that the proposed objective functional could effectively untangle folding parameterization and further produce better results with lower area and angle distortions compared with other functionals and state-of-the-art parameterization techniques. [Display omitted] •Present an unconstrained optimization for smooth analysis-suitable parameterization.•The weighted and modified Liao functional minimizes angle and area distortions.•An L-BFGS algorithm is applied to solve this unconstrained optimization problem.•A Jacobian regularization is used to avoid the need of a non-folding initial solution.•The optimization produces smooth parameterization suitable for isogeometric analysis.</description><identifier>ISSN: 0010-4485</identifier><identifier>EISSN: 1879-2685</identifier><identifier>DOI: 10.1016/j.cad.2021.103079</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Algorithms ; Analysis-suitable parameterization ; B spline functions ; Distortion ; Folding ; Functional analysis ; IsoGeometric Analysis ; L-BFGS (Limited-memory BFGS) ; MIPS (Most Isometric Parameterizations) ; Optimization ; Parameterization ; Regularization ; Weighting functions</subject><ispartof>Computer aided design, 2021-11, Vol.140, p.103079, Article 103079</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-edc2098c29562476ddf10ed015d1c85c9bd808bd85981103d49f3b60f50de39f3</citedby><cites>FETCH-LOGICAL-c325t-edc2098c29562476ddf10ed015d1c85c9bd808bd85981103d49f3b60f50de39f3</cites><orcidid>0000-0001-9760-7789 ; 0000-0002-6393-7955</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010448521000907$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Wang, Xu</creatorcontrib><creatorcontrib>Ma, Weiyin</creatorcontrib><title>Smooth Analysis-Suitable Parameterization Based on a Weighted and Modified Liao Functional</title><title>Computer aided design</title><description>Analysis-suitable parameterization is a fundamental problem in IGA (IsoGeometric Analysis) implementation which significantly influences computational accuracy and efficiency. This paper proposes a variational framework to address the problem of producing a smooth parameterization of a computational domain represented in B-spline form. In order to control both angle and area distortions, a weighted and modified Liao functional is constructed. The weighting function is a modification of the Gaussian function used to penalize area distortion while a modified Liao functional is used to minimize the angle distortion. A Jacobian regularization scheme is adopted so that invalid initial solutions are acceptable and untangling of folding parameterization is made possible. An L-BFGS algorithm is applied to solve this unconstrained optimization problem. Experimental results show that the proposed objective functional could effectively untangle folding parameterization and further produce better results with lower area and angle distortions compared with other functionals and state-of-the-art parameterization techniques. [Display omitted] •Present an unconstrained optimization for smooth analysis-suitable parameterization.•The weighted and modified Liao functional minimizes angle and area distortions.•An L-BFGS algorithm is applied to solve this unconstrained optimization problem.•A Jacobian regularization is used to avoid the need of a non-folding initial solution.•The optimization produces smooth parameterization suitable for isogeometric analysis.</description><subject>Algorithms</subject><subject>Analysis-suitable parameterization</subject><subject>B spline functions</subject><subject>Distortion</subject><subject>Folding</subject><subject>Functional analysis</subject><subject>IsoGeometric Analysis</subject><subject>L-BFGS (Limited-memory BFGS)</subject><subject>MIPS (Most Isometric Parameterizations)</subject><subject>Optimization</subject><subject>Parameterization</subject><subject>Regularization</subject><subject>Weighting functions</subject><issn>0010-4485</issn><issn>1879-2685</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UMFKAzEUDKJgrX6AtwXPW1-ym90ET7VYFSoKVQQvIU2yNku7qUlWqF9vynr28t4MzDzmDUKXGCYYcHXdTpTUEwIEJ15AzY_QCLOa56Ri9BiNADDkZcnoKToLoQVIyoKP0Mdy61xcZ9NObvbBhnzZ2yhXG5O9SC-3Jhpvf2S0rstuZTA6S0Bm78Z-rmNistPZk9O2sYksrHTZvO_UQS435-ikkZtgLv72GL3N715nD_ni-f5xNl3kqiA05kYrApwpwmlFyrrSusFgNGCqsWJU8ZVmwNKgnOH0my55U6wqaChoUyQ8RlfD3Z13X70JUbSu9ylAEIQyKCjBNU0qPKiUdyF404idt1vp9wKDOFQoWpEqFIcKxVBh8twMHpPif1vjRVDWdMpo642KQjv7j_sX6F54bQ</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Wang, Xu</creator><creator>Ma, Weiyin</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9760-7789</orcidid><orcidid>https://orcid.org/0000-0002-6393-7955</orcidid></search><sort><creationdate>202111</creationdate><title>Smooth Analysis-Suitable Parameterization Based on a Weighted and Modified Liao Functional</title><author>Wang, Xu ; Ma, Weiyin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-edc2098c29562476ddf10ed015d1c85c9bd808bd85981103d49f3b60f50de39f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Analysis-suitable parameterization</topic><topic>B spline functions</topic><topic>Distortion</topic><topic>Folding</topic><topic>Functional analysis</topic><topic>IsoGeometric Analysis</topic><topic>L-BFGS (Limited-memory BFGS)</topic><topic>MIPS (Most Isometric Parameterizations)</topic><topic>Optimization</topic><topic>Parameterization</topic><topic>Regularization</topic><topic>Weighting functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xu</creatorcontrib><creatorcontrib>Ma, Weiyin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer aided design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xu</au><au>Ma, Weiyin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smooth Analysis-Suitable Parameterization Based on a Weighted and Modified Liao Functional</atitle><jtitle>Computer aided design</jtitle><date>2021-11</date><risdate>2021</risdate><volume>140</volume><spage>103079</spage><pages>103079-</pages><artnum>103079</artnum><issn>0010-4485</issn><eissn>1879-2685</eissn><abstract>Analysis-suitable parameterization is a fundamental problem in IGA (IsoGeometric Analysis) implementation which significantly influences computational accuracy and efficiency. This paper proposes a variational framework to address the problem of producing a smooth parameterization of a computational domain represented in B-spline form. In order to control both angle and area distortions, a weighted and modified Liao functional is constructed. The weighting function is a modification of the Gaussian function used to penalize area distortion while a modified Liao functional is used to minimize the angle distortion. A Jacobian regularization scheme is adopted so that invalid initial solutions are acceptable and untangling of folding parameterization is made possible. An L-BFGS algorithm is applied to solve this unconstrained optimization problem. Experimental results show that the proposed objective functional could effectively untangle folding parameterization and further produce better results with lower area and angle distortions compared with other functionals and state-of-the-art parameterization techniques. [Display omitted] •Present an unconstrained optimization for smooth analysis-suitable parameterization.•The weighted and modified Liao functional minimizes angle and area distortions.•An L-BFGS algorithm is applied to solve this unconstrained optimization problem.•A Jacobian regularization is used to avoid the need of a non-folding initial solution.•The optimization produces smooth parameterization suitable for isogeometric analysis.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cad.2021.103079</doi><orcidid>https://orcid.org/0000-0001-9760-7789</orcidid><orcidid>https://orcid.org/0000-0002-6393-7955</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-4485
ispartof Computer aided design, 2021-11, Vol.140, p.103079, Article 103079
issn 0010-4485
1879-2685
language eng
recordid cdi_proquest_journals_2580352175
source Elsevier ScienceDirect Journals
subjects Algorithms
Analysis-suitable parameterization
B spline functions
Distortion
Folding
Functional analysis
IsoGeometric Analysis
L-BFGS (Limited-memory BFGS)
MIPS (Most Isometric Parameterizations)
Optimization
Parameterization
Regularization
Weighting functions
title Smooth Analysis-Suitable Parameterization Based on a Weighted and Modified Liao Functional
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A34%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smooth%20Analysis-Suitable%20Parameterization%20Based%20on%20a%20Weighted%20and%20Modified%20Liao%20Functional&rft.jtitle=Computer%20aided%20design&rft.au=Wang,%20Xu&rft.date=2021-11&rft.volume=140&rft.spage=103079&rft.pages=103079-&rft.artnum=103079&rft.issn=0010-4485&rft.eissn=1879-2685&rft_id=info:doi/10.1016/j.cad.2021.103079&rft_dat=%3Cproquest_cross%3E2580352175%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580352175&rft_id=info:pmid/&rft_els_id=S0010448521000907&rfr_iscdi=true