Fully implicit and accurate treatment of jump conditions for two-phase incompressible Navier–Stokes equations
•A new sharp capturing method for incompressible flow is proposed.•A new formula for the jump condition is derived.•The jump condition is considered in a fully implicit manner.•Convergence for the piecewise smooth solution is obtained.•Illustrations of the bubble rising on Cartesian grids are shown....
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2021-11, Vol.445, p.110587, Article 110587 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 110587 |
container_title | Journal of computational physics |
container_volume | 445 |
creator | Cho, Hyuntae Kang, Myungjoo |
description | •A new sharp capturing method for incompressible flow is proposed.•A new formula for the jump condition is derived.•The jump condition is considered in a fully implicit manner.•Convergence for the piecewise smooth solution is obtained.•Illustrations of the bubble rising on Cartesian grids are shown.
We present a numerical method for two-phase incompressible Navier–Stokes equation with jump discontinuities in the normal projection of the stress tensor and in the material properties. Although the proposed method is only first-order accurate, it does capture discontinuities sharply, not neglecting nor omitting any component of the jump condition. Discontinuities in velocity gradient and pressure are expressed using a linear combination of singular force and tangential derivatives of velocities to handle jump conditions in a fully implicit manner. The linear system for the divergence of the stress tensor is constructed in the framework of the ghost fluid method, and the resulting saddle-point system is solved via an iterative procedure using recently introduced techniques by Egan and Gibou [9]. Numerical results support the inference that the proposed method converges in L∞ norms even when velocities and pressures are not smooth across the interface and can handle a large density ratio that is likely to appear in a real-world simulation. |
doi_str_mv | 10.1016/j.jcp.2021.110587 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2580352041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999121004824</els_id><sourcerecordid>2580352041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-8715fc9a6c690bbe60ee5274a0fe5fe8ddd04db9aa1cf760a1a70d3e8c6f185c3</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhi0EEqVwAHaWWCeM0zoPsUIVBaQKFsDacu2xcEji1HZA3XEHbshJSClrVrOY_5vHR8g5g5QByy_rtFZ9mkHGUsaAl8UBmTCoIMkKlh-SCYydpKoqdkxOQqgBoOTzckLccmiaLbVt31hlI5WdplKpwcuINHqUscUuUmdoPbQ9Va7TNlrXBWqcp_HDJf2rDEhtp1zbewzBrhukD_Ldov_-_HqK7g0Dxc0gf7FTcmRkE_Dsr07Jy_LmeXGXrB5v7xfXq0TNMh6TsmDcqErmKq9gvcYcEHlWzCUY5AZLrTXM9bqSkilT5CCZLEDPsFS5YSVXsym52M_tvdsMGKKo3eC7caXIeAkznsGcjSm2TynvQvBoRO9tK_1WMBA7r6IWo1ex8yr2Xkfmas_geP7uSxGUxU6hth5VFNrZf-gfmdSEMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580352041</pqid></control><display><type>article</type><title>Fully implicit and accurate treatment of jump conditions for two-phase incompressible Navier–Stokes equations</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Cho, Hyuntae ; Kang, Myungjoo</creator><creatorcontrib>Cho, Hyuntae ; Kang, Myungjoo</creatorcontrib><description>•A new sharp capturing method for incompressible flow is proposed.•A new formula for the jump condition is derived.•The jump condition is considered in a fully implicit manner.•Convergence for the piecewise smooth solution is obtained.•Illustrations of the bubble rising on Cartesian grids are shown.
We present a numerical method for two-phase incompressible Navier–Stokes equation with jump discontinuities in the normal projection of the stress tensor and in the material properties. Although the proposed method is only first-order accurate, it does capture discontinuities sharply, not neglecting nor omitting any component of the jump condition. Discontinuities in velocity gradient and pressure are expressed using a linear combination of singular force and tangential derivatives of velocities to handle jump conditions in a fully implicit manner. The linear system for the divergence of the stress tensor is constructed in the framework of the ghost fluid method, and the resulting saddle-point system is solved via an iterative procedure using recently introduced techniques by Egan and Gibou [9]. Numerical results support the inference that the proposed method converges in L∞ norms even when velocities and pressures are not smooth across the interface and can handle a large density ratio that is likely to appear in a real-world simulation.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2021.110587</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Computational physics ; Density ratio ; Discontinuity ; Divergence ; Finite difference method ; Fluid flow ; Incompressible flow ; Incompressible Navier-Stokes ; Iterative methods ; Level-set method ; Material properties ; Mathematical analysis ; Navier-Stokes equations ; Norms ; Numerical methods ; Saddle points ; Tensors ; Two-phase flows ; Velocity gradient</subject><ispartof>Journal of computational physics, 2021-11, Vol.445, p.110587, Article 110587</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Nov 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-8715fc9a6c690bbe60ee5274a0fe5fe8ddd04db9aa1cf760a1a70d3e8c6f185c3</citedby><cites>FETCH-LOGICAL-c325t-8715fc9a6c690bbe60ee5274a0fe5fe8ddd04db9aa1cf760a1a70d3e8c6f185c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2021.110587$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Cho, Hyuntae</creatorcontrib><creatorcontrib>Kang, Myungjoo</creatorcontrib><title>Fully implicit and accurate treatment of jump conditions for two-phase incompressible Navier–Stokes equations</title><title>Journal of computational physics</title><description>•A new sharp capturing method for incompressible flow is proposed.•A new formula for the jump condition is derived.•The jump condition is considered in a fully implicit manner.•Convergence for the piecewise smooth solution is obtained.•Illustrations of the bubble rising on Cartesian grids are shown.
We present a numerical method for two-phase incompressible Navier–Stokes equation with jump discontinuities in the normal projection of the stress tensor and in the material properties. Although the proposed method is only first-order accurate, it does capture discontinuities sharply, not neglecting nor omitting any component of the jump condition. Discontinuities in velocity gradient and pressure are expressed using a linear combination of singular force and tangential derivatives of velocities to handle jump conditions in a fully implicit manner. The linear system for the divergence of the stress tensor is constructed in the framework of the ghost fluid method, and the resulting saddle-point system is solved via an iterative procedure using recently introduced techniques by Egan and Gibou [9]. Numerical results support the inference that the proposed method converges in L∞ norms even when velocities and pressures are not smooth across the interface and can handle a large density ratio that is likely to appear in a real-world simulation.</description><subject>Computational physics</subject><subject>Density ratio</subject><subject>Discontinuity</subject><subject>Divergence</subject><subject>Finite difference method</subject><subject>Fluid flow</subject><subject>Incompressible flow</subject><subject>Incompressible Navier-Stokes</subject><subject>Iterative methods</subject><subject>Level-set method</subject><subject>Material properties</subject><subject>Mathematical analysis</subject><subject>Navier-Stokes equations</subject><subject>Norms</subject><subject>Numerical methods</subject><subject>Saddle points</subject><subject>Tensors</subject><subject>Two-phase flows</subject><subject>Velocity gradient</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtOwzAQhi0EEqVwAHaWWCeM0zoPsUIVBaQKFsDacu2xcEji1HZA3XEHbshJSClrVrOY_5vHR8g5g5QByy_rtFZ9mkHGUsaAl8UBmTCoIMkKlh-SCYydpKoqdkxOQqgBoOTzckLccmiaLbVt31hlI5WdplKpwcuINHqUscUuUmdoPbQ9Va7TNlrXBWqcp_HDJf2rDEhtp1zbewzBrhukD_Ldov_-_HqK7g0Dxc0gf7FTcmRkE_Dsr07Jy_LmeXGXrB5v7xfXq0TNMh6TsmDcqErmKq9gvcYcEHlWzCUY5AZLrTXM9bqSkilT5CCZLEDPsFS5YSVXsym52M_tvdsMGKKo3eC7caXIeAkznsGcjSm2TynvQvBoRO9tK_1WMBA7r6IWo1ex8yr2Xkfmas_geP7uSxGUxU6hth5VFNrZf-gfmdSEMA</recordid><startdate>20211115</startdate><enddate>20211115</enddate><creator>Cho, Hyuntae</creator><creator>Kang, Myungjoo</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20211115</creationdate><title>Fully implicit and accurate treatment of jump conditions for two-phase incompressible Navier–Stokes equations</title><author>Cho, Hyuntae ; Kang, Myungjoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-8715fc9a6c690bbe60ee5274a0fe5fe8ddd04db9aa1cf760a1a70d3e8c6f185c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational physics</topic><topic>Density ratio</topic><topic>Discontinuity</topic><topic>Divergence</topic><topic>Finite difference method</topic><topic>Fluid flow</topic><topic>Incompressible flow</topic><topic>Incompressible Navier-Stokes</topic><topic>Iterative methods</topic><topic>Level-set method</topic><topic>Material properties</topic><topic>Mathematical analysis</topic><topic>Navier-Stokes equations</topic><topic>Norms</topic><topic>Numerical methods</topic><topic>Saddle points</topic><topic>Tensors</topic><topic>Two-phase flows</topic><topic>Velocity gradient</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Hyuntae</creatorcontrib><creatorcontrib>Kang, Myungjoo</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Hyuntae</au><au>Kang, Myungjoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fully implicit and accurate treatment of jump conditions for two-phase incompressible Navier–Stokes equations</atitle><jtitle>Journal of computational physics</jtitle><date>2021-11-15</date><risdate>2021</risdate><volume>445</volume><spage>110587</spage><pages>110587-</pages><artnum>110587</artnum><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>•A new sharp capturing method for incompressible flow is proposed.•A new formula for the jump condition is derived.•The jump condition is considered in a fully implicit manner.•Convergence for the piecewise smooth solution is obtained.•Illustrations of the bubble rising on Cartesian grids are shown.
We present a numerical method for two-phase incompressible Navier–Stokes equation with jump discontinuities in the normal projection of the stress tensor and in the material properties. Although the proposed method is only first-order accurate, it does capture discontinuities sharply, not neglecting nor omitting any component of the jump condition. Discontinuities in velocity gradient and pressure are expressed using a linear combination of singular force and tangential derivatives of velocities to handle jump conditions in a fully implicit manner. The linear system for the divergence of the stress tensor is constructed in the framework of the ghost fluid method, and the resulting saddle-point system is solved via an iterative procedure using recently introduced techniques by Egan and Gibou [9]. Numerical results support the inference that the proposed method converges in L∞ norms even when velocities and pressures are not smooth across the interface and can handle a large density ratio that is likely to appear in a real-world simulation.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2021.110587</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2021-11, Vol.445, p.110587, Article 110587 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_journals_2580352041 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Computational physics Density ratio Discontinuity Divergence Finite difference method Fluid flow Incompressible flow Incompressible Navier-Stokes Iterative methods Level-set method Material properties Mathematical analysis Navier-Stokes equations Norms Numerical methods Saddle points Tensors Two-phase flows Velocity gradient |
title | Fully implicit and accurate treatment of jump conditions for two-phase incompressible Navier–Stokes equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A55%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fully%20implicit%20and%20accurate%20treatment%20of%20jump%20conditions%20for%20two-phase%20incompressible%20Navier%E2%80%93Stokes%20equations&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Cho,%20Hyuntae&rft.date=2021-11-15&rft.volume=445&rft.spage=110587&rft.pages=110587-&rft.artnum=110587&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2021.110587&rft_dat=%3Cproquest_cross%3E2580352041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580352041&rft_id=info:pmid/&rft_els_id=S0021999121004824&rfr_iscdi=true |