Fully implicit and accurate treatment of jump conditions for two-phase incompressible Navier–Stokes equations

•A new sharp capturing method for incompressible flow is proposed.•A new formula for the jump condition is derived.•The jump condition is considered in a fully implicit manner.•Convergence for the piecewise smooth solution is obtained.•Illustrations of the bubble rising on Cartesian grids are shown....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2021-11, Vol.445, p.110587, Article 110587
Hauptverfasser: Cho, Hyuntae, Kang, Myungjoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 110587
container_title Journal of computational physics
container_volume 445
creator Cho, Hyuntae
Kang, Myungjoo
description •A new sharp capturing method for incompressible flow is proposed.•A new formula for the jump condition is derived.•The jump condition is considered in a fully implicit manner.•Convergence for the piecewise smooth solution is obtained.•Illustrations of the bubble rising on Cartesian grids are shown. We present a numerical method for two-phase incompressible Navier–Stokes equation with jump discontinuities in the normal projection of the stress tensor and in the material properties. Although the proposed method is only first-order accurate, it does capture discontinuities sharply, not neglecting nor omitting any component of the jump condition. Discontinuities in velocity gradient and pressure are expressed using a linear combination of singular force and tangential derivatives of velocities to handle jump conditions in a fully implicit manner. The linear system for the divergence of the stress tensor is constructed in the framework of the ghost fluid method, and the resulting saddle-point system is solved via an iterative procedure using recently introduced techniques by Egan and Gibou [9]. Numerical results support the inference that the proposed method converges in L∞ norms even when velocities and pressures are not smooth across the interface and can handle a large density ratio that is likely to appear in a real-world simulation.
doi_str_mv 10.1016/j.jcp.2021.110587
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2580352041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999121004824</els_id><sourcerecordid>2580352041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-8715fc9a6c690bbe60ee5274a0fe5fe8ddd04db9aa1cf760a1a70d3e8c6f185c3</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhi0EEqVwAHaWWCeM0zoPsUIVBaQKFsDacu2xcEji1HZA3XEHbshJSClrVrOY_5vHR8g5g5QByy_rtFZ9mkHGUsaAl8UBmTCoIMkKlh-SCYydpKoqdkxOQqgBoOTzckLccmiaLbVt31hlI5WdplKpwcuINHqUscUuUmdoPbQ9Va7TNlrXBWqcp_HDJf2rDEhtp1zbewzBrhukD_Ldov_-_HqK7g0Dxc0gf7FTcmRkE_Dsr07Jy_LmeXGXrB5v7xfXq0TNMh6TsmDcqErmKq9gvcYcEHlWzCUY5AZLrTXM9bqSkilT5CCZLEDPsFS5YSVXsym52M_tvdsMGKKo3eC7caXIeAkznsGcjSm2TynvQvBoRO9tK_1WMBA7r6IWo1ex8yr2Xkfmas_geP7uSxGUxU6hth5VFNrZf-gfmdSEMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580352041</pqid></control><display><type>article</type><title>Fully implicit and accurate treatment of jump conditions for two-phase incompressible Navier–Stokes equations</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Cho, Hyuntae ; Kang, Myungjoo</creator><creatorcontrib>Cho, Hyuntae ; Kang, Myungjoo</creatorcontrib><description>•A new sharp capturing method for incompressible flow is proposed.•A new formula for the jump condition is derived.•The jump condition is considered in a fully implicit manner.•Convergence for the piecewise smooth solution is obtained.•Illustrations of the bubble rising on Cartesian grids are shown. We present a numerical method for two-phase incompressible Navier–Stokes equation with jump discontinuities in the normal projection of the stress tensor and in the material properties. Although the proposed method is only first-order accurate, it does capture discontinuities sharply, not neglecting nor omitting any component of the jump condition. Discontinuities in velocity gradient and pressure are expressed using a linear combination of singular force and tangential derivatives of velocities to handle jump conditions in a fully implicit manner. The linear system for the divergence of the stress tensor is constructed in the framework of the ghost fluid method, and the resulting saddle-point system is solved via an iterative procedure using recently introduced techniques by Egan and Gibou [9]. Numerical results support the inference that the proposed method converges in L∞ norms even when velocities and pressures are not smooth across the interface and can handle a large density ratio that is likely to appear in a real-world simulation.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2021.110587</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Computational physics ; Density ratio ; Discontinuity ; Divergence ; Finite difference method ; Fluid flow ; Incompressible flow ; Incompressible Navier-Stokes ; Iterative methods ; Level-set method ; Material properties ; Mathematical analysis ; Navier-Stokes equations ; Norms ; Numerical methods ; Saddle points ; Tensors ; Two-phase flows ; Velocity gradient</subject><ispartof>Journal of computational physics, 2021-11, Vol.445, p.110587, Article 110587</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Nov 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-8715fc9a6c690bbe60ee5274a0fe5fe8ddd04db9aa1cf760a1a70d3e8c6f185c3</citedby><cites>FETCH-LOGICAL-c325t-8715fc9a6c690bbe60ee5274a0fe5fe8ddd04db9aa1cf760a1a70d3e8c6f185c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2021.110587$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Cho, Hyuntae</creatorcontrib><creatorcontrib>Kang, Myungjoo</creatorcontrib><title>Fully implicit and accurate treatment of jump conditions for two-phase incompressible Navier–Stokes equations</title><title>Journal of computational physics</title><description>•A new sharp capturing method for incompressible flow is proposed.•A new formula for the jump condition is derived.•The jump condition is considered in a fully implicit manner.•Convergence for the piecewise smooth solution is obtained.•Illustrations of the bubble rising on Cartesian grids are shown. We present a numerical method for two-phase incompressible Navier–Stokes equation with jump discontinuities in the normal projection of the stress tensor and in the material properties. Although the proposed method is only first-order accurate, it does capture discontinuities sharply, not neglecting nor omitting any component of the jump condition. Discontinuities in velocity gradient and pressure are expressed using a linear combination of singular force and tangential derivatives of velocities to handle jump conditions in a fully implicit manner. The linear system for the divergence of the stress tensor is constructed in the framework of the ghost fluid method, and the resulting saddle-point system is solved via an iterative procedure using recently introduced techniques by Egan and Gibou [9]. Numerical results support the inference that the proposed method converges in L∞ norms even when velocities and pressures are not smooth across the interface and can handle a large density ratio that is likely to appear in a real-world simulation.</description><subject>Computational physics</subject><subject>Density ratio</subject><subject>Discontinuity</subject><subject>Divergence</subject><subject>Finite difference method</subject><subject>Fluid flow</subject><subject>Incompressible flow</subject><subject>Incompressible Navier-Stokes</subject><subject>Iterative methods</subject><subject>Level-set method</subject><subject>Material properties</subject><subject>Mathematical analysis</subject><subject>Navier-Stokes equations</subject><subject>Norms</subject><subject>Numerical methods</subject><subject>Saddle points</subject><subject>Tensors</subject><subject>Two-phase flows</subject><subject>Velocity gradient</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtOwzAQhi0EEqVwAHaWWCeM0zoPsUIVBaQKFsDacu2xcEji1HZA3XEHbshJSClrVrOY_5vHR8g5g5QByy_rtFZ9mkHGUsaAl8UBmTCoIMkKlh-SCYydpKoqdkxOQqgBoOTzckLccmiaLbVt31hlI5WdplKpwcuINHqUscUuUmdoPbQ9Va7TNlrXBWqcp_HDJf2rDEhtp1zbewzBrhukD_Ldov_-_HqK7g0Dxc0gf7FTcmRkE_Dsr07Jy_LmeXGXrB5v7xfXq0TNMh6TsmDcqErmKq9gvcYcEHlWzCUY5AZLrTXM9bqSkilT5CCZLEDPsFS5YSVXsym52M_tvdsMGKKo3eC7caXIeAkznsGcjSm2TynvQvBoRO9tK_1WMBA7r6IWo1ex8yr2Xkfmas_geP7uSxGUxU6hth5VFNrZf-gfmdSEMA</recordid><startdate>20211115</startdate><enddate>20211115</enddate><creator>Cho, Hyuntae</creator><creator>Kang, Myungjoo</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20211115</creationdate><title>Fully implicit and accurate treatment of jump conditions for two-phase incompressible Navier–Stokes equations</title><author>Cho, Hyuntae ; Kang, Myungjoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-8715fc9a6c690bbe60ee5274a0fe5fe8ddd04db9aa1cf760a1a70d3e8c6f185c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational physics</topic><topic>Density ratio</topic><topic>Discontinuity</topic><topic>Divergence</topic><topic>Finite difference method</topic><topic>Fluid flow</topic><topic>Incompressible flow</topic><topic>Incompressible Navier-Stokes</topic><topic>Iterative methods</topic><topic>Level-set method</topic><topic>Material properties</topic><topic>Mathematical analysis</topic><topic>Navier-Stokes equations</topic><topic>Norms</topic><topic>Numerical methods</topic><topic>Saddle points</topic><topic>Tensors</topic><topic>Two-phase flows</topic><topic>Velocity gradient</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Hyuntae</creatorcontrib><creatorcontrib>Kang, Myungjoo</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Hyuntae</au><au>Kang, Myungjoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fully implicit and accurate treatment of jump conditions for two-phase incompressible Navier–Stokes equations</atitle><jtitle>Journal of computational physics</jtitle><date>2021-11-15</date><risdate>2021</risdate><volume>445</volume><spage>110587</spage><pages>110587-</pages><artnum>110587</artnum><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>•A new sharp capturing method for incompressible flow is proposed.•A new formula for the jump condition is derived.•The jump condition is considered in a fully implicit manner.•Convergence for the piecewise smooth solution is obtained.•Illustrations of the bubble rising on Cartesian grids are shown. We present a numerical method for two-phase incompressible Navier–Stokes equation with jump discontinuities in the normal projection of the stress tensor and in the material properties. Although the proposed method is only first-order accurate, it does capture discontinuities sharply, not neglecting nor omitting any component of the jump condition. Discontinuities in velocity gradient and pressure are expressed using a linear combination of singular force and tangential derivatives of velocities to handle jump conditions in a fully implicit manner. The linear system for the divergence of the stress tensor is constructed in the framework of the ghost fluid method, and the resulting saddle-point system is solved via an iterative procedure using recently introduced techniques by Egan and Gibou [9]. Numerical results support the inference that the proposed method converges in L∞ norms even when velocities and pressures are not smooth across the interface and can handle a large density ratio that is likely to appear in a real-world simulation.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2021.110587</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2021-11, Vol.445, p.110587, Article 110587
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_journals_2580352041
source Elsevier ScienceDirect Journals Complete
subjects Computational physics
Density ratio
Discontinuity
Divergence
Finite difference method
Fluid flow
Incompressible flow
Incompressible Navier-Stokes
Iterative methods
Level-set method
Material properties
Mathematical analysis
Navier-Stokes equations
Norms
Numerical methods
Saddle points
Tensors
Two-phase flows
Velocity gradient
title Fully implicit and accurate treatment of jump conditions for two-phase incompressible Navier–Stokes equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A55%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fully%20implicit%20and%20accurate%20treatment%20of%20jump%20conditions%20for%20two-phase%20incompressible%20Navier%E2%80%93Stokes%20equations&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Cho,%20Hyuntae&rft.date=2021-11-15&rft.volume=445&rft.spage=110587&rft.pages=110587-&rft.artnum=110587&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2021.110587&rft_dat=%3Cproquest_cross%3E2580352041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580352041&rft_id=info:pmid/&rft_els_id=S0021999121004824&rfr_iscdi=true