Difference Sets and Positive Exponential Sums. II: Cubic Residues in Cyclic Groups

By constructing suitable nonnegative exponential sums, we give upper bounds on the cardinality of any set in cyclic groups such that the difference set avoids cubic residues modulo .

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Steklov Institute of Mathematics 2021-09, Vol.314 (1), p.138-143
Hauptverfasser: Matolcsi, Máté, Ruzsa, Imre Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 143
container_issue 1
container_start_page 138
container_title Proceedings of the Steklov Institute of Mathematics
container_volume 314
creator Matolcsi, Máté
Ruzsa, Imre Z.
description By constructing suitable nonnegative exponential sums, we give upper bounds on the cardinality of any set in cyclic groups such that the difference set avoids cubic residues modulo .
doi_str_mv 10.1134/S0081543821040088
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2580341517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580341517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-c3a0d3ac8ef4c0b8f32a1e67c2c5e0f45501892ab45bed2f21d39c475324e2233</originalsourceid><addsrcrecordid>eNp1UEtLAzEQDqJgrf4AbwHPWzN5dFNvUmstFJRWz0s2O5GUdndNdsX-e1MqeBAvM8N8jxk-Qq6BjQCEvF0zpkFJoTkwmWZ9QgagBGR6zNQpGRzg7ICfk4sYN4xJlcvJgKwevHMYsLZI19hFauqKvjTRd_4T6eyrbWqsO2-2dN3v4oguFnd02pfe0hVGX_UYqa_pdG-3aTUPTd_GS3LmzDbi1U8fkrfH2ev0KVs-zxfT-2VmBYy7VA2rhLEanbSs1E5wAzjOLbcKmZNKMdATbkqpSqy441CJiZW5Elwi50IMyc3Rtw3NR3qkKzZNH-p0suBKMyFBQZ5YcGTZ0MQY0BVt8DsT9gWw4hBd8Se6pOFHTUzc-h3Dr_P_om9s7G6G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580341517</pqid></control><display><type>article</type><title>Difference Sets and Positive Exponential Sums. II: Cubic Residues in Cyclic Groups</title><source>SpringerLink Journals - AutoHoldings</source><creator>Matolcsi, Máté ; Ruzsa, Imre Z.</creator><creatorcontrib>Matolcsi, Máté ; Ruzsa, Imre Z.</creatorcontrib><description>By constructing suitable nonnegative exponential sums, we give upper bounds on the cardinality of any set in cyclic groups such that the difference set avoids cubic residues modulo .</description><identifier>ISSN: 0081-5438</identifier><identifier>EISSN: 1531-8605</identifier><identifier>DOI: 10.1134/S0081543821040088</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>14/34 ; 639/766/189 ; 639/766/530 ; 639/766/747 ; Mathematics ; Mathematics and Statistics ; Residues ; Sums ; Upper bounds</subject><ispartof>Proceedings of the Steklov Institute of Mathematics, 2021-09, Vol.314 (1), p.138-143</ispartof><rights>Pleiades Publishing, Ltd. 2021</rights><rights>Pleiades Publishing, Ltd. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-c3a0d3ac8ef4c0b8f32a1e67c2c5e0f45501892ab45bed2f21d39c475324e2233</citedby><cites>FETCH-LOGICAL-c316t-c3a0d3ac8ef4c0b8f32a1e67c2c5e0f45501892ab45bed2f21d39c475324e2233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0081543821040088$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0081543821040088$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Matolcsi, Máté</creatorcontrib><creatorcontrib>Ruzsa, Imre Z.</creatorcontrib><title>Difference Sets and Positive Exponential Sums. II: Cubic Residues in Cyclic Groups</title><title>Proceedings of the Steklov Institute of Mathematics</title><addtitle>Proc. Steklov Inst. Math</addtitle><description>By constructing suitable nonnegative exponential sums, we give upper bounds on the cardinality of any set in cyclic groups such that the difference set avoids cubic residues modulo .</description><subject>14/34</subject><subject>639/766/189</subject><subject>639/766/530</subject><subject>639/766/747</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Residues</subject><subject>Sums</subject><subject>Upper bounds</subject><issn>0081-5438</issn><issn>1531-8605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLAzEQDqJgrf4AbwHPWzN5dFNvUmstFJRWz0s2O5GUdndNdsX-e1MqeBAvM8N8jxk-Qq6BjQCEvF0zpkFJoTkwmWZ9QgagBGR6zNQpGRzg7ICfk4sYN4xJlcvJgKwevHMYsLZI19hFauqKvjTRd_4T6eyrbWqsO2-2dN3v4oguFnd02pfe0hVGX_UYqa_pdG-3aTUPTd_GS3LmzDbi1U8fkrfH2ev0KVs-zxfT-2VmBYy7VA2rhLEanbSs1E5wAzjOLbcKmZNKMdATbkqpSqy441CJiZW5Elwi50IMyc3Rtw3NR3qkKzZNH-p0suBKMyFBQZ5YcGTZ0MQY0BVt8DsT9gWw4hBd8Se6pOFHTUzc-h3Dr_P_om9s7G6G</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Matolcsi, Máté</creator><creator>Ruzsa, Imre Z.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210901</creationdate><title>Difference Sets and Positive Exponential Sums. II: Cubic Residues in Cyclic Groups</title><author>Matolcsi, Máté ; Ruzsa, Imre Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-c3a0d3ac8ef4c0b8f32a1e67c2c5e0f45501892ab45bed2f21d39c475324e2233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>14/34</topic><topic>639/766/189</topic><topic>639/766/530</topic><topic>639/766/747</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Residues</topic><topic>Sums</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matolcsi, Máté</creatorcontrib><creatorcontrib>Ruzsa, Imre Z.</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the Steklov Institute of Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matolcsi, Máté</au><au>Ruzsa, Imre Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Difference Sets and Positive Exponential Sums. II: Cubic Residues in Cyclic Groups</atitle><jtitle>Proceedings of the Steklov Institute of Mathematics</jtitle><stitle>Proc. Steklov Inst. Math</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>314</volume><issue>1</issue><spage>138</spage><epage>143</epage><pages>138-143</pages><issn>0081-5438</issn><eissn>1531-8605</eissn><abstract>By constructing suitable nonnegative exponential sums, we give upper bounds on the cardinality of any set in cyclic groups such that the difference set avoids cubic residues modulo .</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0081543821040088</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0081-5438
ispartof Proceedings of the Steklov Institute of Mathematics, 2021-09, Vol.314 (1), p.138-143
issn 0081-5438
1531-8605
language eng
recordid cdi_proquest_journals_2580341517
source SpringerLink Journals - AutoHoldings
subjects 14/34
639/766/189
639/766/530
639/766/747
Mathematics
Mathematics and Statistics
Residues
Sums
Upper bounds
title Difference Sets and Positive Exponential Sums. II: Cubic Residues in Cyclic Groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T18%3A47%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Difference%20Sets%20and%20Positive%20Exponential%20Sums.%20II:%20Cubic%20Residues%20in%20Cyclic%20Groups&rft.jtitle=Proceedings%20of%20the%20Steklov%20Institute%20of%20Mathematics&rft.au=Matolcsi,%20M%C3%A1t%C3%A9&rft.date=2021-09-01&rft.volume=314&rft.issue=1&rft.spage=138&rft.epage=143&rft.pages=138-143&rft.issn=0081-5438&rft.eissn=1531-8605&rft_id=info:doi/10.1134/S0081543821040088&rft_dat=%3Cproquest_cross%3E2580341517%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580341517&rft_id=info:pmid/&rfr_iscdi=true