Mathematical Modeling of Deformation and Failure of Salt Rock Samples

In uniaxial compression tests of cubic samples, the authors measure displacements in the mid-cross section of the samples at different distances from side faces. The mathematical modeling of deformation of salt rock samples uses the elastoplastic model with linear isotropic strengthening and the ass...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mining science 2021-05, Vol.57 (3), p.370-379
Hauptverfasser: Baryakh, A. A., Tsayukov, A. A., Evseev, A. V., Lomakin, I. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 379
container_issue 3
container_start_page 370
container_title Journal of mining science
container_volume 57
creator Baryakh, A. A.
Tsayukov, A. A.
Evseev, A. V.
Lomakin, I. S.
description In uniaxial compression tests of cubic samples, the authors measure displacements in the mid-cross section of the samples at different distances from side faces. The mathematical modeling of deformation of salt rock samples uses the elastoplastic model with linear isotropic strengthening and the associated flow rule. The plasticity condition is the three-dimension strength criterion reflective of shearing and tensile fracturing. The 3D FEM-based mathematical modeling is implemented in terms of displacements with discretization into 8-point isoparametric hexahedral elements. The mathematical model of deformation and failure of salt rock samples is calibrated using the calculation results. The elastoplastic model with linear isotropic strengthening ensures reasonable agreement between the experimental and theoretical data, and is applicable to estimating stability of rib pillars, critical lateral strain rates in the pillars and their remaining life.
doi_str_mv 10.1134/S1062739121030029
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2580341361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A678467454</galeid><sourcerecordid>A678467454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-c178ae8fbc857f1e996d2ccf045a0944ed2c4ea071e5d6d578c65da375da21693</originalsourceid><addsrcrecordid>eNp1kVFLwzAQx4soOKcfwLeCTz50Jk2aNI9jbjrYEDZ9DjG91M6umUkL-u1NqSBDJHC5y__3vwtcFF1jNMGY0LstRizlROAUI4JQKk6iEc44SXJO2GnIg5z0-nl04f0OISRyJkbRfK3aN9irttKqjte2gLpqytia-B6Mdb1gm1g1RbxQVd056KWtqtt4Y_V7yPaHGvxldGZU7eHq5x5HL4v58-wxWT09LGfTVaIJxW2iMc8V5OZV5xk3GIRgRaq1QTRTSFAKoaKgEMeQFazIeK5ZVijCQ0gxE2Qc3Qx9D85-dOBbubOda8JImWY5CkMIw4GaDFSpapBVY2zrlA6ngH2lbQOmCu9TxnPKOM1oMNweGQLTwmdbqs57udxujlk8sNpZ7x0YeXDVXrkviZHsVyH_rCJ40sHjA9uU4H6__b_pGyrSiCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580341361</pqid></control><display><type>article</type><title>Mathematical Modeling of Deformation and Failure of Salt Rock Samples</title><source>SpringerNature Journals</source><creator>Baryakh, A. A. ; Tsayukov, A. A. ; Evseev, A. V. ; Lomakin, I. S.</creator><creatorcontrib>Baryakh, A. A. ; Tsayukov, A. A. ; Evseev, A. V. ; Lomakin, I. S.</creatorcontrib><description>In uniaxial compression tests of cubic samples, the authors measure displacements in the mid-cross section of the samples at different distances from side faces. The mathematical modeling of deformation of salt rock samples uses the elastoplastic model with linear isotropic strengthening and the associated flow rule. The plasticity condition is the three-dimension strength criterion reflective of shearing and tensile fracturing. The 3D FEM-based mathematical modeling is implemented in terms of displacements with discretization into 8-point isoparametric hexahedral elements. The mathematical model of deformation and failure of salt rock samples is calibrated using the calculation results. The elastoplastic model with linear isotropic strengthening ensures reasonable agreement between the experimental and theoretical data, and is applicable to estimating stability of rib pillars, critical lateral strain rates in the pillars and their remaining life.</description><identifier>ISSN: 1062-7391</identifier><identifier>EISSN: 1573-8736</identifier><identifier>DOI: 10.1134/S1062739121030029</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Compression ; Compression tests ; Deformation ; Dimensions ; Earth and Environmental Science ; Earth Sciences ; Elastoplasticity ; Finite element method ; Geomechanics ; Geophysics/Geodesy ; Geotechnical Engineering &amp; Applied Earth Sciences ; Lateral stability ; Mathematical analysis ; Mathematical models ; Mineral Resources ; Modelling ; Rocks ; Salts ; Sediment samples ; Shearing ; Strengthening ; Three dimensional models</subject><ispartof>Journal of mining science, 2021-05, Vol.57 (3), p.370-379</ispartof><rights>Pleiades Publishing, Ltd. 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Pleiades Publishing, Ltd. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c341t-c178ae8fbc857f1e996d2ccf045a0944ed2c4ea071e5d6d578c65da375da21693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1062739121030029$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1062739121030029$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Baryakh, A. A.</creatorcontrib><creatorcontrib>Tsayukov, A. A.</creatorcontrib><creatorcontrib>Evseev, A. V.</creatorcontrib><creatorcontrib>Lomakin, I. S.</creatorcontrib><title>Mathematical Modeling of Deformation and Failure of Salt Rock Samples</title><title>Journal of mining science</title><addtitle>J Min Sci</addtitle><description>In uniaxial compression tests of cubic samples, the authors measure displacements in the mid-cross section of the samples at different distances from side faces. The mathematical modeling of deformation of salt rock samples uses the elastoplastic model with linear isotropic strengthening and the associated flow rule. The plasticity condition is the three-dimension strength criterion reflective of shearing and tensile fracturing. The 3D FEM-based mathematical modeling is implemented in terms of displacements with discretization into 8-point isoparametric hexahedral elements. The mathematical model of deformation and failure of salt rock samples is calibrated using the calculation results. The elastoplastic model with linear isotropic strengthening ensures reasonable agreement between the experimental and theoretical data, and is applicable to estimating stability of rib pillars, critical lateral strain rates in the pillars and their remaining life.</description><subject>Compression</subject><subject>Compression tests</subject><subject>Deformation</subject><subject>Dimensions</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Elastoplasticity</subject><subject>Finite element method</subject><subject>Geomechanics</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Lateral stability</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mineral Resources</subject><subject>Modelling</subject><subject>Rocks</subject><subject>Salts</subject><subject>Sediment samples</subject><subject>Shearing</subject><subject>Strengthening</subject><subject>Three dimensional models</subject><issn>1062-7391</issn><issn>1573-8736</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kVFLwzAQx4soOKcfwLeCTz50Jk2aNI9jbjrYEDZ9DjG91M6umUkL-u1NqSBDJHC5y__3vwtcFF1jNMGY0LstRizlROAUI4JQKk6iEc44SXJO2GnIg5z0-nl04f0OISRyJkbRfK3aN9irttKqjte2gLpqytia-B6Mdb1gm1g1RbxQVd056KWtqtt4Y_V7yPaHGvxldGZU7eHq5x5HL4v58-wxWT09LGfTVaIJxW2iMc8V5OZV5xk3GIRgRaq1QTRTSFAKoaKgEMeQFazIeK5ZVijCQ0gxE2Qc3Qx9D85-dOBbubOda8JImWY5CkMIw4GaDFSpapBVY2zrlA6ngH2lbQOmCu9TxnPKOM1oMNweGQLTwmdbqs57udxujlk8sNpZ7x0YeXDVXrkviZHsVyH_rCJ40sHjA9uU4H6__b_pGyrSiCw</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Baryakh, A. A.</creator><creator>Tsayukov, A. A.</creator><creator>Evseev, A. V.</creator><creator>Lomakin, I. S.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20210501</creationdate><title>Mathematical Modeling of Deformation and Failure of Salt Rock Samples</title><author>Baryakh, A. A. ; Tsayukov, A. A. ; Evseev, A. V. ; Lomakin, I. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-c178ae8fbc857f1e996d2ccf045a0944ed2c4ea071e5d6d578c65da375da21693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Compression</topic><topic>Compression tests</topic><topic>Deformation</topic><topic>Dimensions</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Elastoplasticity</topic><topic>Finite element method</topic><topic>Geomechanics</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Lateral stability</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mineral Resources</topic><topic>Modelling</topic><topic>Rocks</topic><topic>Salts</topic><topic>Sediment samples</topic><topic>Shearing</topic><topic>Strengthening</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baryakh, A. A.</creatorcontrib><creatorcontrib>Tsayukov, A. A.</creatorcontrib><creatorcontrib>Evseev, A. V.</creatorcontrib><creatorcontrib>Lomakin, I. S.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of mining science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baryakh, A. A.</au><au>Tsayukov, A. A.</au><au>Evseev, A. V.</au><au>Lomakin, I. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical Modeling of Deformation and Failure of Salt Rock Samples</atitle><jtitle>Journal of mining science</jtitle><stitle>J Min Sci</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>57</volume><issue>3</issue><spage>370</spage><epage>379</epage><pages>370-379</pages><issn>1062-7391</issn><eissn>1573-8736</eissn><abstract>In uniaxial compression tests of cubic samples, the authors measure displacements in the mid-cross section of the samples at different distances from side faces. The mathematical modeling of deformation of salt rock samples uses the elastoplastic model with linear isotropic strengthening and the associated flow rule. The plasticity condition is the three-dimension strength criterion reflective of shearing and tensile fracturing. The 3D FEM-based mathematical modeling is implemented in terms of displacements with discretization into 8-point isoparametric hexahedral elements. The mathematical model of deformation and failure of salt rock samples is calibrated using the calculation results. The elastoplastic model with linear isotropic strengthening ensures reasonable agreement between the experimental and theoretical data, and is applicable to estimating stability of rib pillars, critical lateral strain rates in the pillars and their remaining life.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1062739121030029</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1062-7391
ispartof Journal of mining science, 2021-05, Vol.57 (3), p.370-379
issn 1062-7391
1573-8736
language eng
recordid cdi_proquest_journals_2580341361
source SpringerNature Journals
subjects Compression
Compression tests
Deformation
Dimensions
Earth and Environmental Science
Earth Sciences
Elastoplasticity
Finite element method
Geomechanics
Geophysics/Geodesy
Geotechnical Engineering & Applied Earth Sciences
Lateral stability
Mathematical analysis
Mathematical models
Mineral Resources
Modelling
Rocks
Salts
Sediment samples
Shearing
Strengthening
Three dimensional models
title Mathematical Modeling of Deformation and Failure of Salt Rock Samples
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A50%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20Modeling%20of%20Deformation%20and%20Failure%20of%20Salt%20Rock%20Samples&rft.jtitle=Journal%20of%20mining%20science&rft.au=Baryakh,%20A.%20A.&rft.date=2021-05-01&rft.volume=57&rft.issue=3&rft.spage=370&rft.epage=379&rft.pages=370-379&rft.issn=1062-7391&rft.eissn=1573-8736&rft_id=info:doi/10.1134/S1062739121030029&rft_dat=%3Cgale_proqu%3EA678467454%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580341361&rft_id=info:pmid/&rft_galeid=A678467454&rfr_iscdi=true