Mathematical Modeling of Deformation and Failure of Salt Rock Samples
In uniaxial compression tests of cubic samples, the authors measure displacements in the mid-cross section of the samples at different distances from side faces. The mathematical modeling of deformation of salt rock samples uses the elastoplastic model with linear isotropic strengthening and the ass...
Gespeichert in:
Veröffentlicht in: | Journal of mining science 2021-05, Vol.57 (3), p.370-379 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 379 |
---|---|
container_issue | 3 |
container_start_page | 370 |
container_title | Journal of mining science |
container_volume | 57 |
creator | Baryakh, A. A. Tsayukov, A. A. Evseev, A. V. Lomakin, I. S. |
description | In uniaxial compression tests of cubic samples, the authors measure displacements in the mid-cross section of the samples at different distances from side faces. The mathematical modeling of deformation of salt rock samples uses the elastoplastic model with linear isotropic strengthening and the associated flow rule. The plasticity condition is the three-dimension strength criterion reflective of shearing and tensile fracturing. The 3D FEM-based mathematical modeling is implemented in terms of displacements with discretization into 8-point isoparametric hexahedral elements. The mathematical model of deformation and failure of salt rock samples is calibrated using the calculation results. The elastoplastic model with linear isotropic strengthening ensures reasonable agreement between the experimental and theoretical data, and is applicable to estimating stability of rib pillars, critical lateral strain rates in the pillars and their remaining life. |
doi_str_mv | 10.1134/S1062739121030029 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2580341361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A678467454</galeid><sourcerecordid>A678467454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-c178ae8fbc857f1e996d2ccf045a0944ed2c4ea071e5d6d578c65da375da21693</originalsourceid><addsrcrecordid>eNp1kVFLwzAQx4soOKcfwLeCTz50Jk2aNI9jbjrYEDZ9DjG91M6umUkL-u1NqSBDJHC5y__3vwtcFF1jNMGY0LstRizlROAUI4JQKk6iEc44SXJO2GnIg5z0-nl04f0OISRyJkbRfK3aN9irttKqjte2gLpqytia-B6Mdb1gm1g1RbxQVd056KWtqtt4Y_V7yPaHGvxldGZU7eHq5x5HL4v58-wxWT09LGfTVaIJxW2iMc8V5OZV5xk3GIRgRaq1QTRTSFAKoaKgEMeQFazIeK5ZVijCQ0gxE2Qc3Qx9D85-dOBbubOda8JImWY5CkMIw4GaDFSpapBVY2zrlA6ngH2lbQOmCu9TxnPKOM1oMNweGQLTwmdbqs57udxujlk8sNpZ7x0YeXDVXrkviZHsVyH_rCJ40sHjA9uU4H6__b_pGyrSiCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580341361</pqid></control><display><type>article</type><title>Mathematical Modeling of Deformation and Failure of Salt Rock Samples</title><source>SpringerNature Journals</source><creator>Baryakh, A. A. ; Tsayukov, A. A. ; Evseev, A. V. ; Lomakin, I. S.</creator><creatorcontrib>Baryakh, A. A. ; Tsayukov, A. A. ; Evseev, A. V. ; Lomakin, I. S.</creatorcontrib><description>In uniaxial compression tests of cubic samples, the authors measure displacements in the mid-cross section of the samples at different distances from side faces. The mathematical modeling of deformation of salt rock samples uses the elastoplastic model with linear isotropic strengthening and the associated flow rule. The plasticity condition is the three-dimension strength criterion reflective of shearing and tensile fracturing. The 3D FEM-based mathematical modeling is implemented in terms of displacements with discretization into 8-point isoparametric hexahedral elements. The mathematical model of deformation and failure of salt rock samples is calibrated using the calculation results. The elastoplastic model with linear isotropic strengthening ensures reasonable agreement between the experimental and theoretical data, and is applicable to estimating stability of rib pillars, critical lateral strain rates in the pillars and their remaining life.</description><identifier>ISSN: 1062-7391</identifier><identifier>EISSN: 1573-8736</identifier><identifier>DOI: 10.1134/S1062739121030029</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Compression ; Compression tests ; Deformation ; Dimensions ; Earth and Environmental Science ; Earth Sciences ; Elastoplasticity ; Finite element method ; Geomechanics ; Geophysics/Geodesy ; Geotechnical Engineering & Applied Earth Sciences ; Lateral stability ; Mathematical analysis ; Mathematical models ; Mineral Resources ; Modelling ; Rocks ; Salts ; Sediment samples ; Shearing ; Strengthening ; Three dimensional models</subject><ispartof>Journal of mining science, 2021-05, Vol.57 (3), p.370-379</ispartof><rights>Pleiades Publishing, Ltd. 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Pleiades Publishing, Ltd. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c341t-c178ae8fbc857f1e996d2ccf045a0944ed2c4ea071e5d6d578c65da375da21693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1062739121030029$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1062739121030029$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Baryakh, A. A.</creatorcontrib><creatorcontrib>Tsayukov, A. A.</creatorcontrib><creatorcontrib>Evseev, A. V.</creatorcontrib><creatorcontrib>Lomakin, I. S.</creatorcontrib><title>Mathematical Modeling of Deformation and Failure of Salt Rock Samples</title><title>Journal of mining science</title><addtitle>J Min Sci</addtitle><description>In uniaxial compression tests of cubic samples, the authors measure displacements in the mid-cross section of the samples at different distances from side faces. The mathematical modeling of deformation of salt rock samples uses the elastoplastic model with linear isotropic strengthening and the associated flow rule. The plasticity condition is the three-dimension strength criterion reflective of shearing and tensile fracturing. The 3D FEM-based mathematical modeling is implemented in terms of displacements with discretization into 8-point isoparametric hexahedral elements. The mathematical model of deformation and failure of salt rock samples is calibrated using the calculation results. The elastoplastic model with linear isotropic strengthening ensures reasonable agreement between the experimental and theoretical data, and is applicable to estimating stability of rib pillars, critical lateral strain rates in the pillars and their remaining life.</description><subject>Compression</subject><subject>Compression tests</subject><subject>Deformation</subject><subject>Dimensions</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Elastoplasticity</subject><subject>Finite element method</subject><subject>Geomechanics</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Lateral stability</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mineral Resources</subject><subject>Modelling</subject><subject>Rocks</subject><subject>Salts</subject><subject>Sediment samples</subject><subject>Shearing</subject><subject>Strengthening</subject><subject>Three dimensional models</subject><issn>1062-7391</issn><issn>1573-8736</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kVFLwzAQx4soOKcfwLeCTz50Jk2aNI9jbjrYEDZ9DjG91M6umUkL-u1NqSBDJHC5y__3vwtcFF1jNMGY0LstRizlROAUI4JQKk6iEc44SXJO2GnIg5z0-nl04f0OISRyJkbRfK3aN9irttKqjte2gLpqytia-B6Mdb1gm1g1RbxQVd056KWtqtt4Y_V7yPaHGvxldGZU7eHq5x5HL4v58-wxWT09LGfTVaIJxW2iMc8V5OZV5xk3GIRgRaq1QTRTSFAKoaKgEMeQFazIeK5ZVijCQ0gxE2Qc3Qx9D85-dOBbubOda8JImWY5CkMIw4GaDFSpapBVY2zrlA6ngH2lbQOmCu9TxnPKOM1oMNweGQLTwmdbqs57udxujlk8sNpZ7x0YeXDVXrkviZHsVyH_rCJ40sHjA9uU4H6__b_pGyrSiCw</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Baryakh, A. A.</creator><creator>Tsayukov, A. A.</creator><creator>Evseev, A. V.</creator><creator>Lomakin, I. S.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20210501</creationdate><title>Mathematical Modeling of Deformation and Failure of Salt Rock Samples</title><author>Baryakh, A. A. ; Tsayukov, A. A. ; Evseev, A. V. ; Lomakin, I. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-c178ae8fbc857f1e996d2ccf045a0944ed2c4ea071e5d6d578c65da375da21693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Compression</topic><topic>Compression tests</topic><topic>Deformation</topic><topic>Dimensions</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Elastoplasticity</topic><topic>Finite element method</topic><topic>Geomechanics</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Lateral stability</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mineral Resources</topic><topic>Modelling</topic><topic>Rocks</topic><topic>Salts</topic><topic>Sediment samples</topic><topic>Shearing</topic><topic>Strengthening</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baryakh, A. A.</creatorcontrib><creatorcontrib>Tsayukov, A. A.</creatorcontrib><creatorcontrib>Evseev, A. V.</creatorcontrib><creatorcontrib>Lomakin, I. S.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of mining science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baryakh, A. A.</au><au>Tsayukov, A. A.</au><au>Evseev, A. V.</au><au>Lomakin, I. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical Modeling of Deformation and Failure of Salt Rock Samples</atitle><jtitle>Journal of mining science</jtitle><stitle>J Min Sci</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>57</volume><issue>3</issue><spage>370</spage><epage>379</epage><pages>370-379</pages><issn>1062-7391</issn><eissn>1573-8736</eissn><abstract>In uniaxial compression tests of cubic samples, the authors measure displacements in the mid-cross section of the samples at different distances from side faces. The mathematical modeling of deformation of salt rock samples uses the elastoplastic model with linear isotropic strengthening and the associated flow rule. The plasticity condition is the three-dimension strength criterion reflective of shearing and tensile fracturing. The 3D FEM-based mathematical modeling is implemented in terms of displacements with discretization into 8-point isoparametric hexahedral elements. The mathematical model of deformation and failure of salt rock samples is calibrated using the calculation results. The elastoplastic model with linear isotropic strengthening ensures reasonable agreement between the experimental and theoretical data, and is applicable to estimating stability of rib pillars, critical lateral strain rates in the pillars and their remaining life.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1062739121030029</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1062-7391 |
ispartof | Journal of mining science, 2021-05, Vol.57 (3), p.370-379 |
issn | 1062-7391 1573-8736 |
language | eng |
recordid | cdi_proquest_journals_2580341361 |
source | SpringerNature Journals |
subjects | Compression Compression tests Deformation Dimensions Earth and Environmental Science Earth Sciences Elastoplasticity Finite element method Geomechanics Geophysics/Geodesy Geotechnical Engineering & Applied Earth Sciences Lateral stability Mathematical analysis Mathematical models Mineral Resources Modelling Rocks Salts Sediment samples Shearing Strengthening Three dimensional models |
title | Mathematical Modeling of Deformation and Failure of Salt Rock Samples |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A50%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20Modeling%20of%20Deformation%20and%20Failure%20of%20Salt%20Rock%20Samples&rft.jtitle=Journal%20of%20mining%20science&rft.au=Baryakh,%20A.%20A.&rft.date=2021-05-01&rft.volume=57&rft.issue=3&rft.spage=370&rft.epage=379&rft.pages=370-379&rft.issn=1062-7391&rft.eissn=1573-8736&rft_id=info:doi/10.1134/S1062739121030029&rft_dat=%3Cgale_proqu%3EA678467454%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580341361&rft_id=info:pmid/&rft_galeid=A678467454&rfr_iscdi=true |