Control of chirality, bond flexing and anharmonicity in an electric field

We located “hidden” S‐character chirality in formally achiral glycine using a vector‐based interpretation of the total electronic charge density distribution. We induced the formation of stereoisomers in glycine by the application of an electric field. Control of chirality was indicated from the pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of quantum chemistry 2021-11, Vol.121 (22), p.n/a
Hauptverfasser: Li, Zi, Nie, Xing, Xu, Tianlv, Li, Shuman, Yang, Yong, Früchtl, Herbert, Mourik, Tanja, Kirk, Steven R., Paterson, Martin J., Shigeta, Yasuteru, Jenkins, Samantha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 22
container_start_page
container_title International journal of quantum chemistry
container_volume 121
creator Li, Zi
Nie, Xing
Xu, Tianlv
Li, Shuman
Yang, Yong
Früchtl, Herbert
Mourik, Tanja
Kirk, Steven R.
Paterson, Martin J.
Shigeta, Yasuteru
Jenkins, Samantha
description We located “hidden” S‐character chirality in formally achiral glycine using a vector‐based interpretation of the total electronic charge density distribution. We induced the formation of stereoisomers in glycine by the application of an electric field. Control of chirality was indicated from the proportionate response to a non‐structurally distorting electric field. The bond‐flexing was determined to be a measure of bond strain, which could be a factor of three lower or higher, depending on the direction of the electric field, than in the absence of the electric field. The bond‐anharmonicity was found to be approximately independent of the electric field. We also compared the formally achiral glycine with the chiral molecules alanine and lactic acid, quantifying the preferences for the S and R stereoisomers. The proportional response of the chiral discrimination to the magnitude and direction of the applied electric field indicated use of the chirality discrimination as a molecular similarity measure. The glycine stress tensor trajectories Tσ(s) of the clockwise (CW): −180.0° ≤ θ ≤ 0.0° and counterclockwise (CCW): 0° ≤ θ ≤ 180.0° directions of rotation of the torsional C1–N7 BCP in the presence of an applied electric(E)‐field, E = −100 × 10−4 a.u., the molecular graph are inset in their respective sub‐panels: unlabeled green spheres represent bond critical points.
doi_str_mv 10.1002/qua.26793
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2580234311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580234311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3323-9a9a558373ad013c4289608cb72405ec0d7711434d5a80c402bf8e5c4e6eaab63</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsHv0HAk-C2kz-b7B5LsVooiGDBW8hmszZlm7TZLdpvb3S9epph3m_mDQ-hWwITAkCnh6OeUCFLdoZGBEqZcUHez9EoaZBJAcUluuq6LQAIJuQILefB9zG0ODTYbFzUretPD7gKvsZNa7-c_8A69dpvdNwF70zSsfNpgG1rTR-dwY2zbX2NLhrddvbmr47RevH4Nn_OVi9Py_lslRnGKMtKXeo8L5hkugbCDKdFmd4ylaQccmuglpIQznid6wIMB1o1hc0Nt8JqXQk2RnfD3X0Mh6PterUNx-iTpaJ5AZRxRkii7gfKxNB10TZqH91Ox5MioH6SUikp9ZtUYqcD--lae_ofVK_r2bDxDU2KaUM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580234311</pqid></control><display><type>article</type><title>Control of chirality, bond flexing and anharmonicity in an electric field</title><source>Access via Wiley Online Library</source><creator>Li, Zi ; Nie, Xing ; Xu, Tianlv ; Li, Shuman ; Yang, Yong ; Früchtl, Herbert ; Mourik, Tanja ; Kirk, Steven R. ; Paterson, Martin J. ; Shigeta, Yasuteru ; Jenkins, Samantha</creator><creatorcontrib>Li, Zi ; Nie, Xing ; Xu, Tianlv ; Li, Shuman ; Yang, Yong ; Früchtl, Herbert ; Mourik, Tanja ; Kirk, Steven R. ; Paterson, Martin J. ; Shigeta, Yasuteru ; Jenkins, Samantha</creatorcontrib><description>We located “hidden” S‐character chirality in formally achiral glycine using a vector‐based interpretation of the total electronic charge density distribution. We induced the formation of stereoisomers in glycine by the application of an electric field. Control of chirality was indicated from the proportionate response to a non‐structurally distorting electric field. The bond‐flexing was determined to be a measure of bond strain, which could be a factor of three lower or higher, depending on the direction of the electric field, than in the absence of the electric field. The bond‐anharmonicity was found to be approximately independent of the electric field. We also compared the formally achiral glycine with the chiral molecules alanine and lactic acid, quantifying the preferences for the S and R stereoisomers. The proportional response of the chiral discrimination to the magnitude and direction of the applied electric field indicated use of the chirality discrimination as a molecular similarity measure. The glycine stress tensor trajectories Tσ(s) of the clockwise (CW): −180.0° ≤ θ ≤ 0.0° and counterclockwise (CCW): 0° ≤ θ ≤ 180.0° directions of rotation of the torsional C1–N7 BCP in the presence of an applied electric(E)‐field, E = −100 × 10−4 a.u., the molecular graph are inset in their respective sub‐panels: unlabeled green spheres represent bond critical points.</description><identifier>ISSN: 0020-7608</identifier><identifier>EISSN: 1097-461X</identifier><identifier>DOI: 10.1002/qua.26793</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Alanine ; Anharmonicity ; Charge density ; Chemistry ; Chirality ; Density distribution ; Discrimination ; electric field ; Electric fields ; Flexing ; Glycine ; Lactic acid ; next generation QTAIM ; Physical chemistry ; Quantum physics ; Stereoisomerism</subject><ispartof>International journal of quantum chemistry, 2021-11, Vol.121 (22), p.n/a</ispartof><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3323-9a9a558373ad013c4289608cb72405ec0d7711434d5a80c402bf8e5c4e6eaab63</citedby><cites>FETCH-LOGICAL-c3323-9a9a558373ad013c4289608cb72405ec0d7711434d5a80c402bf8e5c4e6eaab63</cites><orcidid>0000-0001-7683-3293 ; 0000-0002-4288-7653</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqua.26793$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqua.26793$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Li, Zi</creatorcontrib><creatorcontrib>Nie, Xing</creatorcontrib><creatorcontrib>Xu, Tianlv</creatorcontrib><creatorcontrib>Li, Shuman</creatorcontrib><creatorcontrib>Yang, Yong</creatorcontrib><creatorcontrib>Früchtl, Herbert</creatorcontrib><creatorcontrib>Mourik, Tanja</creatorcontrib><creatorcontrib>Kirk, Steven R.</creatorcontrib><creatorcontrib>Paterson, Martin J.</creatorcontrib><creatorcontrib>Shigeta, Yasuteru</creatorcontrib><creatorcontrib>Jenkins, Samantha</creatorcontrib><title>Control of chirality, bond flexing and anharmonicity in an electric field</title><title>International journal of quantum chemistry</title><description>We located “hidden” S‐character chirality in formally achiral glycine using a vector‐based interpretation of the total electronic charge density distribution. We induced the formation of stereoisomers in glycine by the application of an electric field. Control of chirality was indicated from the proportionate response to a non‐structurally distorting electric field. The bond‐flexing was determined to be a measure of bond strain, which could be a factor of three lower or higher, depending on the direction of the electric field, than in the absence of the electric field. The bond‐anharmonicity was found to be approximately independent of the electric field. We also compared the formally achiral glycine with the chiral molecules alanine and lactic acid, quantifying the preferences for the S and R stereoisomers. The proportional response of the chiral discrimination to the magnitude and direction of the applied electric field indicated use of the chirality discrimination as a molecular similarity measure. The glycine stress tensor trajectories Tσ(s) of the clockwise (CW): −180.0° ≤ θ ≤ 0.0° and counterclockwise (CCW): 0° ≤ θ ≤ 180.0° directions of rotation of the torsional C1–N7 BCP in the presence of an applied electric(E)‐field, E = −100 × 10−4 a.u., the molecular graph are inset in their respective sub‐panels: unlabeled green spheres represent bond critical points.</description><subject>Alanine</subject><subject>Anharmonicity</subject><subject>Charge density</subject><subject>Chemistry</subject><subject>Chirality</subject><subject>Density distribution</subject><subject>Discrimination</subject><subject>electric field</subject><subject>Electric fields</subject><subject>Flexing</subject><subject>Glycine</subject><subject>Lactic acid</subject><subject>next generation QTAIM</subject><subject>Physical chemistry</subject><subject>Quantum physics</subject><subject>Stereoisomerism</subject><issn>0020-7608</issn><issn>1097-461X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsHv0HAk-C2kz-b7B5LsVooiGDBW8hmszZlm7TZLdpvb3S9epph3m_mDQ-hWwITAkCnh6OeUCFLdoZGBEqZcUHez9EoaZBJAcUluuq6LQAIJuQILefB9zG0ODTYbFzUretPD7gKvsZNa7-c_8A69dpvdNwF70zSsfNpgG1rTR-dwY2zbX2NLhrddvbmr47RevH4Nn_OVi9Py_lslRnGKMtKXeo8L5hkugbCDKdFmd4ylaQccmuglpIQznid6wIMB1o1hc0Nt8JqXQk2RnfD3X0Mh6PterUNx-iTpaJ5AZRxRkii7gfKxNB10TZqH91Ox5MioH6SUikp9ZtUYqcD--lae_ofVK_r2bDxDU2KaUM</recordid><startdate>20211115</startdate><enddate>20211115</enddate><creator>Li, Zi</creator><creator>Nie, Xing</creator><creator>Xu, Tianlv</creator><creator>Li, Shuman</creator><creator>Yang, Yong</creator><creator>Früchtl, Herbert</creator><creator>Mourik, Tanja</creator><creator>Kirk, Steven R.</creator><creator>Paterson, Martin J.</creator><creator>Shigeta, Yasuteru</creator><creator>Jenkins, Samantha</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7683-3293</orcidid><orcidid>https://orcid.org/0000-0002-4288-7653</orcidid></search><sort><creationdate>20211115</creationdate><title>Control of chirality, bond flexing and anharmonicity in an electric field</title><author>Li, Zi ; Nie, Xing ; Xu, Tianlv ; Li, Shuman ; Yang, Yong ; Früchtl, Herbert ; Mourik, Tanja ; Kirk, Steven R. ; Paterson, Martin J. ; Shigeta, Yasuteru ; Jenkins, Samantha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3323-9a9a558373ad013c4289608cb72405ec0d7711434d5a80c402bf8e5c4e6eaab63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alanine</topic><topic>Anharmonicity</topic><topic>Charge density</topic><topic>Chemistry</topic><topic>Chirality</topic><topic>Density distribution</topic><topic>Discrimination</topic><topic>electric field</topic><topic>Electric fields</topic><topic>Flexing</topic><topic>Glycine</topic><topic>Lactic acid</topic><topic>next generation QTAIM</topic><topic>Physical chemistry</topic><topic>Quantum physics</topic><topic>Stereoisomerism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zi</creatorcontrib><creatorcontrib>Nie, Xing</creatorcontrib><creatorcontrib>Xu, Tianlv</creatorcontrib><creatorcontrib>Li, Shuman</creatorcontrib><creatorcontrib>Yang, Yong</creatorcontrib><creatorcontrib>Früchtl, Herbert</creatorcontrib><creatorcontrib>Mourik, Tanja</creatorcontrib><creatorcontrib>Kirk, Steven R.</creatorcontrib><creatorcontrib>Paterson, Martin J.</creatorcontrib><creatorcontrib>Shigeta, Yasuteru</creatorcontrib><creatorcontrib>Jenkins, Samantha</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of quantum chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zi</au><au>Nie, Xing</au><au>Xu, Tianlv</au><au>Li, Shuman</au><au>Yang, Yong</au><au>Früchtl, Herbert</au><au>Mourik, Tanja</au><au>Kirk, Steven R.</au><au>Paterson, Martin J.</au><au>Shigeta, Yasuteru</au><au>Jenkins, Samantha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of chirality, bond flexing and anharmonicity in an electric field</atitle><jtitle>International journal of quantum chemistry</jtitle><date>2021-11-15</date><risdate>2021</risdate><volume>121</volume><issue>22</issue><epage>n/a</epage><issn>0020-7608</issn><eissn>1097-461X</eissn><abstract>We located “hidden” S‐character chirality in formally achiral glycine using a vector‐based interpretation of the total electronic charge density distribution. We induced the formation of stereoisomers in glycine by the application of an electric field. Control of chirality was indicated from the proportionate response to a non‐structurally distorting electric field. The bond‐flexing was determined to be a measure of bond strain, which could be a factor of three lower or higher, depending on the direction of the electric field, than in the absence of the electric field. The bond‐anharmonicity was found to be approximately independent of the electric field. We also compared the formally achiral glycine with the chiral molecules alanine and lactic acid, quantifying the preferences for the S and R stereoisomers. The proportional response of the chiral discrimination to the magnitude and direction of the applied electric field indicated use of the chirality discrimination as a molecular similarity measure. The glycine stress tensor trajectories Tσ(s) of the clockwise (CW): −180.0° ≤ θ ≤ 0.0° and counterclockwise (CCW): 0° ≤ θ ≤ 180.0° directions of rotation of the torsional C1–N7 BCP in the presence of an applied electric(E)‐field, E = −100 × 10−4 a.u., the molecular graph are inset in their respective sub‐panels: unlabeled green spheres represent bond critical points.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/qua.26793</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7683-3293</orcidid><orcidid>https://orcid.org/0000-0002-4288-7653</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7608
ispartof International journal of quantum chemistry, 2021-11, Vol.121 (22), p.n/a
issn 0020-7608
1097-461X
language eng
recordid cdi_proquest_journals_2580234311
source Access via Wiley Online Library
subjects Alanine
Anharmonicity
Charge density
Chemistry
Chirality
Density distribution
Discrimination
electric field
Electric fields
Flexing
Glycine
Lactic acid
next generation QTAIM
Physical chemistry
Quantum physics
Stereoisomerism
title Control of chirality, bond flexing and anharmonicity in an electric field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T16%3A33%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20chirality,%20bond%20flexing%20and%20anharmonicity%20in%20an%20electric%20field&rft.jtitle=International%20journal%20of%20quantum%20chemistry&rft.au=Li,%20Zi&rft.date=2021-11-15&rft.volume=121&rft.issue=22&rft.epage=n/a&rft.issn=0020-7608&rft.eissn=1097-461X&rft_id=info:doi/10.1002/qua.26793&rft_dat=%3Cproquest_cross%3E2580234311%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580234311&rft_id=info:pmid/&rfr_iscdi=true