F. nucleatum targets lncRNA ENO1-IT1 to promote glycolysis and oncogenesis in colorectal cancer

ObjectiveMicrobiota disorder promotes chronic inflammation and carcinogenesis. High glycolysis is associated with poor prognosis in patients with colorectal cancer (CRC). However, the potential correlation between the gut microbiota and glucose metabolism is unknown in CRC.Design 18F-FDG (18F-fluoro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gut 2021-11, Vol.70 (11), p.2123-2137
Hauptverfasser: Hong, Jie, Guo, Fangfang, Lu, Shi-Yuan, Shen, Chaoqin, Ma, Dan, Zhang, Xinyu, Xie, Yile, Yan, Tingting, Yu, TaChung, Sun, Tiantian, Qian, Yun, Zhong, Ming, Chen, Jinxian, Peng, Yanshen, Wang, Cheng, Zhou, Xiang, Liu, Jianjun, Liu, Qiang, Ma, Xiong, Chen, Ying-Xuan, Chen, Haoyan, Fang, Jing-Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2137
container_issue 11
container_start_page 2123
container_title Gut
container_volume 70
creator Hong, Jie
Guo, Fangfang
Lu, Shi-Yuan
Shen, Chaoqin
Ma, Dan
Zhang, Xinyu
Xie, Yile
Yan, Tingting
Yu, TaChung
Sun, Tiantian
Qian, Yun
Zhong, Ming
Chen, Jinxian
Peng, Yanshen
Wang, Cheng
Zhou, Xiang
Liu, Jianjun
Liu, Qiang
Ma, Xiong
Chen, Ying-Xuan
Chen, Haoyan
Fang, Jing-Yuan
description ObjectiveMicrobiota disorder promotes chronic inflammation and carcinogenesis. High glycolysis is associated with poor prognosis in patients with colorectal cancer (CRC). However, the potential correlation between the gut microbiota and glucose metabolism is unknown in CRC.Design 18F-FDG (18F-fluorodeoxyglucose) PET (positron emission tomography)/CT image scanning data and microbiota PCR analysis were performed to measure the correlation between metabolic alterations and microbiota disorder in 33 patients with CRC. Multiple colorectal cancer models, metabolic analysis and Seahorse assay were established to assess the role of long non-coding RNA (lncRNA) enolase1-intronic transcript 1 (ENO1-IT1) in Fusobacterium (F.) nucleatum-induced glucose metabolism and colorectal carcinogenesis. RNA immunoprecipitation and chromatin immunoprecipitation sequencing were conducted to identify potential targets of lncRNA ENO1-IT1.ResultsWe have found F. nucleatum abundance correlated with high glucose metabolism in patients with CRC. Furthermore, F. nucleatum supported carcinogenesis via increasing CRC cell glucose metabolism. Mechanistically, F. nucleatum activated lncRNA ENO1-IT1 transcription via upregulating the binding efficiency of transcription factor SP1 to the promoter region of lncRNA ENO1-IT1. Elevated ENO1-IT behaved as a guider modular for KAT7 histone acetyltransferase, specifying the histone modification pattern on its target genes, including ENO1, and consequently altering CRC biological function.Conclusion F. nucleatum and glucose metabolism are mechanistically, biologically and clinically connected to CRC. Targeting ENO1 pathway may be meaningful in treating patients with CRC with elevated F. nucleatum.
doi_str_mv 10.1136/gutjnl-2020-322780
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2580098609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580098609</sourcerecordid><originalsourceid>FETCH-LOGICAL-b408t-3fb7e770987b90a063e37f1d9668ce31432c4a6ab9fb0304f7128ae523c06d703</originalsourceid><addsrcrecordid>eNqNkEFLwzAYhoMobk7_gAcJeO78knRNehzD6WBsIPMc0jQdG20yk_Swf29H57yJp_CR532_jwehRwJjQlj2sm3j3tYJBQoJo5QLuEJDkmaim4S4RkMAwpMJT_MBugthDwBC5OQWDRhjRJA0HSI5H2Pb6tqo2DY4Kr81MeDa6o_VFL-u1iRZbAiODh-8a1w0eFsftauPYRewsiV2VrutseY07yzuvpw3Oqoaa2W18ffoplJ1MA_nd4Q-56-b2XuyXL8tZtNlUqQgYsKqghvOIRe8yEFBxgzjFSnzLBPaMJIyqlOVqSKvCmCQVpxQocyEMg1ZyYGN0HPf29351ZoQ5d613nYrJZ0I6IozyDuK9pT2LgRvKnnwu0b5oyQgT05l71SenMreaRd6Ole3RWPKS-RHYgckPVA0-_8Vjn_5y5l_BL4Bd8CPWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580098609</pqid></control><display><type>article</type><title>F. nucleatum targets lncRNA ENO1-IT1 to promote glycolysis and oncogenesis in colorectal cancer</title><source>MEDLINE</source><source>PubMed Central</source><creator>Hong, Jie ; Guo, Fangfang ; Lu, Shi-Yuan ; Shen, Chaoqin ; Ma, Dan ; Zhang, Xinyu ; Xie, Yile ; Yan, Tingting ; Yu, TaChung ; Sun, Tiantian ; Qian, Yun ; Zhong, Ming ; Chen, Jinxian ; Peng, Yanshen ; Wang, Cheng ; Zhou, Xiang ; Liu, Jianjun ; Liu, Qiang ; Ma, Xiong ; Chen, Ying-Xuan ; Chen, Haoyan ; Fang, Jing-Yuan</creator><creatorcontrib>Hong, Jie ; Guo, Fangfang ; Lu, Shi-Yuan ; Shen, Chaoqin ; Ma, Dan ; Zhang, Xinyu ; Xie, Yile ; Yan, Tingting ; Yu, TaChung ; Sun, Tiantian ; Qian, Yun ; Zhong, Ming ; Chen, Jinxian ; Peng, Yanshen ; Wang, Cheng ; Zhou, Xiang ; Liu, Jianjun ; Liu, Qiang ; Ma, Xiong ; Chen, Ying-Xuan ; Chen, Haoyan ; Fang, Jing-Yuan</creatorcontrib><description>ObjectiveMicrobiota disorder promotes chronic inflammation and carcinogenesis. High glycolysis is associated with poor prognosis in patients with colorectal cancer (CRC). However, the potential correlation between the gut microbiota and glucose metabolism is unknown in CRC.Design 18F-FDG (18F-fluorodeoxyglucose) PET (positron emission tomography)/CT image scanning data and microbiota PCR analysis were performed to measure the correlation between metabolic alterations and microbiota disorder in 33 patients with CRC. Multiple colorectal cancer models, metabolic analysis and Seahorse assay were established to assess the role of long non-coding RNA (lncRNA) enolase1-intronic transcript 1 (ENO1-IT1) in Fusobacterium (F.) nucleatum-induced glucose metabolism and colorectal carcinogenesis. RNA immunoprecipitation and chromatin immunoprecipitation sequencing were conducted to identify potential targets of lncRNA ENO1-IT1.ResultsWe have found F. nucleatum abundance correlated with high glucose metabolism in patients with CRC. Furthermore, F. nucleatum supported carcinogenesis via increasing CRC cell glucose metabolism. Mechanistically, F. nucleatum activated lncRNA ENO1-IT1 transcription via upregulating the binding efficiency of transcription factor SP1 to the promoter region of lncRNA ENO1-IT1. Elevated ENO1-IT behaved as a guider modular for KAT7 histone acetyltransferase, specifying the histone modification pattern on its target genes, including ENO1, and consequently altering CRC biological function.Conclusion F. nucleatum and glucose metabolism are mechanistically, biologically and clinically connected to CRC. Targeting ENO1 pathway may be meaningful in treating patients with CRC with elevated F. nucleatum.</description><identifier>ISSN: 0017-5749</identifier><identifier>EISSN: 1468-3288</identifier><identifier>DOI: 10.1136/gutjnl-2020-322780</identifier><identifier>PMID: 33318144</identifier><language>eng</language><publisher>England: BMJ Publishing Group Ltd and British Society of Gastroenterology</publisher><subject>Animals ; Biomarkers, Tumor ; Cancer ; Carcinogenesis ; Carcinogenesis - genetics ; Cell growth ; Chromatin ; Colon ; Colorectal cancer ; Colorectal carcinoma ; Colorectal Neoplasms - diagnostic imaging ; Colorectal Neoplasms - genetics ; DNA-Binding Proteins ; Drug resistance ; Fluorodeoxyglucose F18 - pharmacokinetics ; Fusobacterium Infections - genetics ; Fusobacterium nucleatum ; Gastrointestinal Microbiome ; Gene Expression Regulation, Neoplastic ; Glucose metabolism ; Glycolysis ; Glycolysis - genetics ; Histone acetyltransferase ; Histone Acetyltransferases ; Humans ; Immunoprecipitation ; intestinal bacteria ; Intestinal microflora ; Medical imaging ; Metabolites ; Mice ; Microbiota ; Non-coding RNA ; Patients ; Phosphopyruvate Hydratase ; Positron emission tomography ; Positron Emission Tomography Computed Tomography ; Prognosis ; Radiopharmaceuticals - pharmacokinetics ; RNA, Long Noncoding - genetics ; Signal Transduction ; Sp1 protein ; Tumor Cells, Cultured ; Tumor Suppressor Proteins ; Tumorigenesis</subject><ispartof>Gut, 2021-11, Vol.70 (11), p.2123-2137</ispartof><rights>Author(s) (or their employer(s)) 2021. No commercial re-use. See rights and permissions. Published by BMJ.</rights><rights>Author(s) (or their employer(s)) 2020. No commercial re-use. See rights and permissions. Published by BMJ.</rights><rights>2021 Author(s) (or their employer(s)) 2021. No commercial re-use. See rights and permissions. Published by BMJ.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b408t-3fb7e770987b90a063e37f1d9668ce31432c4a6ab9fb0304f7128ae523c06d703</citedby><cites>FETCH-LOGICAL-b408t-3fb7e770987b90a063e37f1d9668ce31432c4a6ab9fb0304f7128ae523c06d703</cites><orcidid>0000-0003-2282-0248 ; 0000-0001-9616-4672 ; 0000-0002-2825-8244 ; 0000-0001-9579-0794 ; 0000-0001-6163-8110</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33318144$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hong, Jie</creatorcontrib><creatorcontrib>Guo, Fangfang</creatorcontrib><creatorcontrib>Lu, Shi-Yuan</creatorcontrib><creatorcontrib>Shen, Chaoqin</creatorcontrib><creatorcontrib>Ma, Dan</creatorcontrib><creatorcontrib>Zhang, Xinyu</creatorcontrib><creatorcontrib>Xie, Yile</creatorcontrib><creatorcontrib>Yan, Tingting</creatorcontrib><creatorcontrib>Yu, TaChung</creatorcontrib><creatorcontrib>Sun, Tiantian</creatorcontrib><creatorcontrib>Qian, Yun</creatorcontrib><creatorcontrib>Zhong, Ming</creatorcontrib><creatorcontrib>Chen, Jinxian</creatorcontrib><creatorcontrib>Peng, Yanshen</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Zhou, Xiang</creatorcontrib><creatorcontrib>Liu, Jianjun</creatorcontrib><creatorcontrib>Liu, Qiang</creatorcontrib><creatorcontrib>Ma, Xiong</creatorcontrib><creatorcontrib>Chen, Ying-Xuan</creatorcontrib><creatorcontrib>Chen, Haoyan</creatorcontrib><creatorcontrib>Fang, Jing-Yuan</creatorcontrib><title>F. nucleatum targets lncRNA ENO1-IT1 to promote glycolysis and oncogenesis in colorectal cancer</title><title>Gut</title><addtitle>Gut</addtitle><addtitle>Gut</addtitle><description>ObjectiveMicrobiota disorder promotes chronic inflammation and carcinogenesis. High glycolysis is associated with poor prognosis in patients with colorectal cancer (CRC). However, the potential correlation between the gut microbiota and glucose metabolism is unknown in CRC.Design 18F-FDG (18F-fluorodeoxyglucose) PET (positron emission tomography)/CT image scanning data and microbiota PCR analysis were performed to measure the correlation between metabolic alterations and microbiota disorder in 33 patients with CRC. Multiple colorectal cancer models, metabolic analysis and Seahorse assay were established to assess the role of long non-coding RNA (lncRNA) enolase1-intronic transcript 1 (ENO1-IT1) in Fusobacterium (F.) nucleatum-induced glucose metabolism and colorectal carcinogenesis. RNA immunoprecipitation and chromatin immunoprecipitation sequencing were conducted to identify potential targets of lncRNA ENO1-IT1.ResultsWe have found F. nucleatum abundance correlated with high glucose metabolism in patients with CRC. Furthermore, F. nucleatum supported carcinogenesis via increasing CRC cell glucose metabolism. Mechanistically, F. nucleatum activated lncRNA ENO1-IT1 transcription via upregulating the binding efficiency of transcription factor SP1 to the promoter region of lncRNA ENO1-IT1. Elevated ENO1-IT behaved as a guider modular for KAT7 histone acetyltransferase, specifying the histone modification pattern on its target genes, including ENO1, and consequently altering CRC biological function.Conclusion F. nucleatum and glucose metabolism are mechanistically, biologically and clinically connected to CRC. Targeting ENO1 pathway may be meaningful in treating patients with CRC with elevated F. nucleatum.</description><subject>Animals</subject><subject>Biomarkers, Tumor</subject><subject>Cancer</subject><subject>Carcinogenesis</subject><subject>Carcinogenesis - genetics</subject><subject>Cell growth</subject><subject>Chromatin</subject><subject>Colon</subject><subject>Colorectal cancer</subject><subject>Colorectal carcinoma</subject><subject>Colorectal Neoplasms - diagnostic imaging</subject><subject>Colorectal Neoplasms - genetics</subject><subject>DNA-Binding Proteins</subject><subject>Drug resistance</subject><subject>Fluorodeoxyglucose F18 - pharmacokinetics</subject><subject>Fusobacterium Infections - genetics</subject><subject>Fusobacterium nucleatum</subject><subject>Gastrointestinal Microbiome</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Glucose metabolism</subject><subject>Glycolysis</subject><subject>Glycolysis - genetics</subject><subject>Histone acetyltransferase</subject><subject>Histone Acetyltransferases</subject><subject>Humans</subject><subject>Immunoprecipitation</subject><subject>intestinal bacteria</subject><subject>Intestinal microflora</subject><subject>Medical imaging</subject><subject>Metabolites</subject><subject>Mice</subject><subject>Microbiota</subject><subject>Non-coding RNA</subject><subject>Patients</subject><subject>Phosphopyruvate Hydratase</subject><subject>Positron emission tomography</subject><subject>Positron Emission Tomography Computed Tomography</subject><subject>Prognosis</subject><subject>Radiopharmaceuticals - pharmacokinetics</subject><subject>RNA, Long Noncoding - genetics</subject><subject>Signal Transduction</subject><subject>Sp1 protein</subject><subject>Tumor Cells, Cultured</subject><subject>Tumor Suppressor Proteins</subject><subject>Tumorigenesis</subject><issn>0017-5749</issn><issn>1468-3288</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkEFLwzAYhoMobk7_gAcJeO78knRNehzD6WBsIPMc0jQdG20yk_Swf29H57yJp_CR532_jwehRwJjQlj2sm3j3tYJBQoJo5QLuEJDkmaim4S4RkMAwpMJT_MBugthDwBC5OQWDRhjRJA0HSI5H2Pb6tqo2DY4Kr81MeDa6o_VFL-u1iRZbAiODh-8a1w0eFsftauPYRewsiV2VrutseY07yzuvpw3Oqoaa2W18ffoplJ1MA_nd4Q-56-b2XuyXL8tZtNlUqQgYsKqghvOIRe8yEFBxgzjFSnzLBPaMJIyqlOVqSKvCmCQVpxQocyEMg1ZyYGN0HPf29351ZoQ5d613nYrJZ0I6IozyDuK9pT2LgRvKnnwu0b5oyQgT05l71SenMreaRd6Ole3RWPKS-RHYgckPVA0-_8Vjn_5y5l_BL4Bd8CPWg</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Hong, Jie</creator><creator>Guo, Fangfang</creator><creator>Lu, Shi-Yuan</creator><creator>Shen, Chaoqin</creator><creator>Ma, Dan</creator><creator>Zhang, Xinyu</creator><creator>Xie, Yile</creator><creator>Yan, Tingting</creator><creator>Yu, TaChung</creator><creator>Sun, Tiantian</creator><creator>Qian, Yun</creator><creator>Zhong, Ming</creator><creator>Chen, Jinxian</creator><creator>Peng, Yanshen</creator><creator>Wang, Cheng</creator><creator>Zhou, Xiang</creator><creator>Liu, Jianjun</creator><creator>Liu, Qiang</creator><creator>Ma, Xiong</creator><creator>Chen, Ying-Xuan</creator><creator>Chen, Haoyan</creator><creator>Fang, Jing-Yuan</creator><general>BMJ Publishing Group Ltd and British Society of Gastroenterology</general><general>BMJ Publishing Group LTD</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BTHHO</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-2282-0248</orcidid><orcidid>https://orcid.org/0000-0001-9616-4672</orcidid><orcidid>https://orcid.org/0000-0002-2825-8244</orcidid><orcidid>https://orcid.org/0000-0001-9579-0794</orcidid><orcidid>https://orcid.org/0000-0001-6163-8110</orcidid></search><sort><creationdate>20211101</creationdate><title>F. nucleatum targets lncRNA ENO1-IT1 to promote glycolysis and oncogenesis in colorectal cancer</title><author>Hong, Jie ; Guo, Fangfang ; Lu, Shi-Yuan ; Shen, Chaoqin ; Ma, Dan ; Zhang, Xinyu ; Xie, Yile ; Yan, Tingting ; Yu, TaChung ; Sun, Tiantian ; Qian, Yun ; Zhong, Ming ; Chen, Jinxian ; Peng, Yanshen ; Wang, Cheng ; Zhou, Xiang ; Liu, Jianjun ; Liu, Qiang ; Ma, Xiong ; Chen, Ying-Xuan ; Chen, Haoyan ; Fang, Jing-Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b408t-3fb7e770987b90a063e37f1d9668ce31432c4a6ab9fb0304f7128ae523c06d703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Biomarkers, Tumor</topic><topic>Cancer</topic><topic>Carcinogenesis</topic><topic>Carcinogenesis - genetics</topic><topic>Cell growth</topic><topic>Chromatin</topic><topic>Colon</topic><topic>Colorectal cancer</topic><topic>Colorectal carcinoma</topic><topic>Colorectal Neoplasms - diagnostic imaging</topic><topic>Colorectal Neoplasms - genetics</topic><topic>DNA-Binding Proteins</topic><topic>Drug resistance</topic><topic>Fluorodeoxyglucose F18 - pharmacokinetics</topic><topic>Fusobacterium Infections - genetics</topic><topic>Fusobacterium nucleatum</topic><topic>Gastrointestinal Microbiome</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Glucose metabolism</topic><topic>Glycolysis</topic><topic>Glycolysis - genetics</topic><topic>Histone acetyltransferase</topic><topic>Histone Acetyltransferases</topic><topic>Humans</topic><topic>Immunoprecipitation</topic><topic>intestinal bacteria</topic><topic>Intestinal microflora</topic><topic>Medical imaging</topic><topic>Metabolites</topic><topic>Mice</topic><topic>Microbiota</topic><topic>Non-coding RNA</topic><topic>Patients</topic><topic>Phosphopyruvate Hydratase</topic><topic>Positron emission tomography</topic><topic>Positron Emission Tomography Computed Tomography</topic><topic>Prognosis</topic><topic>Radiopharmaceuticals - pharmacokinetics</topic><topic>RNA, Long Noncoding - genetics</topic><topic>Signal Transduction</topic><topic>Sp1 protein</topic><topic>Tumor Cells, Cultured</topic><topic>Tumor Suppressor Proteins</topic><topic>Tumorigenesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Jie</creatorcontrib><creatorcontrib>Guo, Fangfang</creatorcontrib><creatorcontrib>Lu, Shi-Yuan</creatorcontrib><creatorcontrib>Shen, Chaoqin</creatorcontrib><creatorcontrib>Ma, Dan</creatorcontrib><creatorcontrib>Zhang, Xinyu</creatorcontrib><creatorcontrib>Xie, Yile</creatorcontrib><creatorcontrib>Yan, Tingting</creatorcontrib><creatorcontrib>Yu, TaChung</creatorcontrib><creatorcontrib>Sun, Tiantian</creatorcontrib><creatorcontrib>Qian, Yun</creatorcontrib><creatorcontrib>Zhong, Ming</creatorcontrib><creatorcontrib>Chen, Jinxian</creatorcontrib><creatorcontrib>Peng, Yanshen</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Zhou, Xiang</creatorcontrib><creatorcontrib>Liu, Jianjun</creatorcontrib><creatorcontrib>Liu, Qiang</creatorcontrib><creatorcontrib>Ma, Xiong</creatorcontrib><creatorcontrib>Chen, Ying-Xuan</creatorcontrib><creatorcontrib>Chen, Haoyan</creatorcontrib><creatorcontrib>Fang, Jing-Yuan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>BMJ Journals</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Gut</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Jie</au><au>Guo, Fangfang</au><au>Lu, Shi-Yuan</au><au>Shen, Chaoqin</au><au>Ma, Dan</au><au>Zhang, Xinyu</au><au>Xie, Yile</au><au>Yan, Tingting</au><au>Yu, TaChung</au><au>Sun, Tiantian</au><au>Qian, Yun</au><au>Zhong, Ming</au><au>Chen, Jinxian</au><au>Peng, Yanshen</au><au>Wang, Cheng</au><au>Zhou, Xiang</au><au>Liu, Jianjun</au><au>Liu, Qiang</au><au>Ma, Xiong</au><au>Chen, Ying-Xuan</au><au>Chen, Haoyan</au><au>Fang, Jing-Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>F. nucleatum targets lncRNA ENO1-IT1 to promote glycolysis and oncogenesis in colorectal cancer</atitle><jtitle>Gut</jtitle><stitle>Gut</stitle><addtitle>Gut</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>70</volume><issue>11</issue><spage>2123</spage><epage>2137</epage><pages>2123-2137</pages><issn>0017-5749</issn><eissn>1468-3288</eissn><abstract>ObjectiveMicrobiota disorder promotes chronic inflammation and carcinogenesis. High glycolysis is associated with poor prognosis in patients with colorectal cancer (CRC). However, the potential correlation between the gut microbiota and glucose metabolism is unknown in CRC.Design 18F-FDG (18F-fluorodeoxyglucose) PET (positron emission tomography)/CT image scanning data and microbiota PCR analysis were performed to measure the correlation between metabolic alterations and microbiota disorder in 33 patients with CRC. Multiple colorectal cancer models, metabolic analysis and Seahorse assay were established to assess the role of long non-coding RNA (lncRNA) enolase1-intronic transcript 1 (ENO1-IT1) in Fusobacterium (F.) nucleatum-induced glucose metabolism and colorectal carcinogenesis. RNA immunoprecipitation and chromatin immunoprecipitation sequencing were conducted to identify potential targets of lncRNA ENO1-IT1.ResultsWe have found F. nucleatum abundance correlated with high glucose metabolism in patients with CRC. Furthermore, F. nucleatum supported carcinogenesis via increasing CRC cell glucose metabolism. Mechanistically, F. nucleatum activated lncRNA ENO1-IT1 transcription via upregulating the binding efficiency of transcription factor SP1 to the promoter region of lncRNA ENO1-IT1. Elevated ENO1-IT behaved as a guider modular for KAT7 histone acetyltransferase, specifying the histone modification pattern on its target genes, including ENO1, and consequently altering CRC biological function.Conclusion F. nucleatum and glucose metabolism are mechanistically, biologically and clinically connected to CRC. Targeting ENO1 pathway may be meaningful in treating patients with CRC with elevated F. nucleatum.</abstract><cop>England</cop><pub>BMJ Publishing Group Ltd and British Society of Gastroenterology</pub><pmid>33318144</pmid><doi>10.1136/gutjnl-2020-322780</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2282-0248</orcidid><orcidid>https://orcid.org/0000-0001-9616-4672</orcidid><orcidid>https://orcid.org/0000-0002-2825-8244</orcidid><orcidid>https://orcid.org/0000-0001-9579-0794</orcidid><orcidid>https://orcid.org/0000-0001-6163-8110</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0017-5749
ispartof Gut, 2021-11, Vol.70 (11), p.2123-2137
issn 0017-5749
1468-3288
language eng
recordid cdi_proquest_journals_2580098609
source MEDLINE; PubMed Central
subjects Animals
Biomarkers, Tumor
Cancer
Carcinogenesis
Carcinogenesis - genetics
Cell growth
Chromatin
Colon
Colorectal cancer
Colorectal carcinoma
Colorectal Neoplasms - diagnostic imaging
Colorectal Neoplasms - genetics
DNA-Binding Proteins
Drug resistance
Fluorodeoxyglucose F18 - pharmacokinetics
Fusobacterium Infections - genetics
Fusobacterium nucleatum
Gastrointestinal Microbiome
Gene Expression Regulation, Neoplastic
Glucose metabolism
Glycolysis
Glycolysis - genetics
Histone acetyltransferase
Histone Acetyltransferases
Humans
Immunoprecipitation
intestinal bacteria
Intestinal microflora
Medical imaging
Metabolites
Mice
Microbiota
Non-coding RNA
Patients
Phosphopyruvate Hydratase
Positron emission tomography
Positron Emission Tomography Computed Tomography
Prognosis
Radiopharmaceuticals - pharmacokinetics
RNA, Long Noncoding - genetics
Signal Transduction
Sp1 protein
Tumor Cells, Cultured
Tumor Suppressor Proteins
Tumorigenesis
title F. nucleatum targets lncRNA ENO1-IT1 to promote glycolysis and oncogenesis in colorectal cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A42%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=F.%20nucleatum%20targets%20lncRNA%20ENO1-IT1%20to%20promote%20glycolysis%20and%20oncogenesis%20in%20colorectal%20cancer&rft.jtitle=Gut&rft.au=Hong,%20Jie&rft.date=2021-11-01&rft.volume=70&rft.issue=11&rft.spage=2123&rft.epage=2137&rft.pages=2123-2137&rft.issn=0017-5749&rft.eissn=1468-3288&rft_id=info:doi/10.1136/gutjnl-2020-322780&rft_dat=%3Cproquest_cross%3E2580098609%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580098609&rft_id=info:pmid/33318144&rfr_iscdi=true