Effects of monochromatic UV radiation on the thermoluminescence of annealed KBr:Cu+ crystals

Effects of monochromatic UV radiation on the thermoluminescence glow curve of annealed KBr:Cu crystals have been studied at low temperature. The crystals were irradiated at 20K and heated up to 300K at a rate of 0.1Ks−1, approximately. For all the irradiation wavelengths used, the glow curves consis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2010-11, Vol.249 (1), p.012024
Hauptverfasser: Pérez-Salas, R, Piters, T, Aceves, R, R, Héctor Riveros, Rodríguez-Mijangos, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 012024
container_title Journal of physics. Conference series
container_volume 249
creator Pérez-Salas, R
Piters, T
Aceves, R
R, Héctor Riveros
Rodríguez-Mijangos, R
description Effects of monochromatic UV radiation on the thermoluminescence glow curve of annealed KBr:Cu crystals have been studied at low temperature. The crystals were irradiated at 20K and heated up to 300K at a rate of 0.1Ks−1, approximately. For all the irradiation wavelengths used, the glow curves consist of two peaks around 170 and 270K. Their intensities have been observed to depend on the wavelength of irradiation. Both emissions resulted to be more intense when the irradiation wavelengths was near the absorption peak of the Cu+ ion or near the band to band absorption of CuBr. Their intensities increase with increasing annealing time. The results are explained in terms of the formation of CuBr nanoparticles during the annealing treatment. The thermally stimulated recombination luminescence appears to be associated to the 3d94s-3d10 transitions of the Cu+ ion. So two possible mechanisms of the e-h pair formation could be used to explain the results: ionization of Cu+, Cu+ → Cu2+ + e, or ionization of halogen ions that are within the CuBr as Br¯ → Br0 + e. In the first case, the recombination luminescence is obtained from the trapping of electrons by the Cu2+ ions, while in the second case, the e-h recombination energy would be transferred to the Cu+ ions.
doi_str_mv 10.1088/1742-6596/249/1/012024
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2580092166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580092166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2734-f72322cd18af327ea9f7e2f4b55d864de1954dee1195505ff28b5be46bb251083</originalsourceid><addsrcrecordid>eNqNkE9LxDAQxYMouK5-BSl4lNokTdLWmy7rH1zw4noSQppO2C7bpibtYb_9plTEwx4Mk3kD814CP4SuCb4jOM8TkjEaC16IhLIiIQkmFFN2gma_i9M_8zm68H6LcRpONkNfS2NA9z6yJmpsa_XG2Ub1tY7Wn5FTVR1m20ah-g2M1zV2NzR1C15Dq2HMqbYFtYMqent094vhNtJu73u185fozASBqx-do_XT8mPxEq_en18XD6tY0yxlscloSqmuSK5MSjNQhcmAGlZyXuWCVUAKHjqQoBxzY2he8hKYKEvKA4J0jm6mdztnvwfwvdzawbXhS0l5jnFBiRDBJSaXdtZ7B0Z2rm6U20uC5UhSjpDkCEkGkpLIiWQIkilY2-7_mfhI5qhXdpVJD_5LglA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580092166</pqid></control><display><type>article</type><title>Effects of monochromatic UV radiation on the thermoluminescence of annealed KBr:Cu+ crystals</title><source>Institute of Physics Open Access Journal Titles</source><creator>Pérez-Salas, R ; Piters, T ; Aceves, R ; R, Héctor Riveros ; Rodríguez-Mijangos, R</creator><creatorcontrib>Pérez-Salas, R ; Piters, T ; Aceves, R ; R, Héctor Riveros ; Rodríguez-Mijangos, R</creatorcontrib><description>Effects of monochromatic UV radiation on the thermoluminescence glow curve of annealed KBr:Cu crystals have been studied at low temperature. The crystals were irradiated at 20K and heated up to 300K at a rate of 0.1Ks−1, approximately. For all the irradiation wavelengths used, the glow curves consist of two peaks around 170 and 270K. Their intensities have been observed to depend on the wavelength of irradiation. Both emissions resulted to be more intense when the irradiation wavelengths was near the absorption peak of the Cu+ ion or near the band to band absorption of CuBr. Their intensities increase with increasing annealing time. The results are explained in terms of the formation of CuBr nanoparticles during the annealing treatment. The thermally stimulated recombination luminescence appears to be associated to the 3d94s-3d10 transitions of the Cu+ ion. So two possible mechanisms of the e-h pair formation could be used to explain the results: ionization of Cu+, Cu+ → Cu2+ + e, or ionization of halogen ions that are within the CuBr as Br¯ → Br0 + e. In the first case, the recombination luminescence is obtained from the trapping of electrons by the Cu2+ ions, while in the second case, the e-h recombination energy would be transferred to the Cu+ ions.</description><identifier>ISSN: 1742-6596</identifier><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/249/1/012024</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Absorption ; Annealing ; Copper ; Crystals ; Glow curves ; Ionization ; Irradiation ; Low temperature ; Luminescence ; Nanoparticles ; Physics ; Thermoluminescence ; Ultraviolet radiation ; Wavelengths</subject><ispartof>Journal of physics. Conference series, 2010-11, Vol.249 (1), p.012024</ispartof><rights>Copyright IOP Publishing Nov 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2734-f72322cd18af327ea9f7e2f4b55d864de1954dee1195505ff28b5be46bb251083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/249/1/012024/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,781,785,1554,27630,27926,27927,53906,53933</link.rule.ids><linktorsrc>$$Uhttp://iopscience.iop.org/1742-6596/249/1/012024$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Pérez-Salas, R</creatorcontrib><creatorcontrib>Piters, T</creatorcontrib><creatorcontrib>Aceves, R</creatorcontrib><creatorcontrib>R, Héctor Riveros</creatorcontrib><creatorcontrib>Rodríguez-Mijangos, R</creatorcontrib><title>Effects of monochromatic UV radiation on the thermoluminescence of annealed KBr:Cu+ crystals</title><title>Journal of physics. Conference series</title><description>Effects of monochromatic UV radiation on the thermoluminescence glow curve of annealed KBr:Cu crystals have been studied at low temperature. The crystals were irradiated at 20K and heated up to 300K at a rate of 0.1Ks−1, approximately. For all the irradiation wavelengths used, the glow curves consist of two peaks around 170 and 270K. Their intensities have been observed to depend on the wavelength of irradiation. Both emissions resulted to be more intense when the irradiation wavelengths was near the absorption peak of the Cu+ ion or near the band to band absorption of CuBr. Their intensities increase with increasing annealing time. The results are explained in terms of the formation of CuBr nanoparticles during the annealing treatment. The thermally stimulated recombination luminescence appears to be associated to the 3d94s-3d10 transitions of the Cu+ ion. So two possible mechanisms of the e-h pair formation could be used to explain the results: ionization of Cu+, Cu+ → Cu2+ + e, or ionization of halogen ions that are within the CuBr as Br¯ → Br0 + e. In the first case, the recombination luminescence is obtained from the trapping of electrons by the Cu2+ ions, while in the second case, the e-h recombination energy would be transferred to the Cu+ ions.</description><subject>Absorption</subject><subject>Annealing</subject><subject>Copper</subject><subject>Crystals</subject><subject>Glow curves</subject><subject>Ionization</subject><subject>Irradiation</subject><subject>Low temperature</subject><subject>Luminescence</subject><subject>Nanoparticles</subject><subject>Physics</subject><subject>Thermoluminescence</subject><subject>Ultraviolet radiation</subject><subject>Wavelengths</subject><issn>1742-6596</issn><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkE9LxDAQxYMouK5-BSl4lNokTdLWmy7rH1zw4noSQppO2C7bpibtYb_9plTEwx4Mk3kD814CP4SuCb4jOM8TkjEaC16IhLIiIQkmFFN2gma_i9M_8zm68H6LcRpONkNfS2NA9z6yJmpsa_XG2Ub1tY7Wn5FTVR1m20ah-g2M1zV2NzR1C15Dq2HMqbYFtYMqent094vhNtJu73u185fozASBqx-do_XT8mPxEq_en18XD6tY0yxlscloSqmuSK5MSjNQhcmAGlZyXuWCVUAKHjqQoBxzY2he8hKYKEvKA4J0jm6mdztnvwfwvdzawbXhS0l5jnFBiRDBJSaXdtZ7B0Z2rm6U20uC5UhSjpDkCEkGkpLIiWQIkilY2-7_mfhI5qhXdpVJD_5LglA</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Pérez-Salas, R</creator><creator>Piters, T</creator><creator>Aceves, R</creator><creator>R, Héctor Riveros</creator><creator>Rodríguez-Mijangos, R</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20101101</creationdate><title>Effects of monochromatic UV radiation on the thermoluminescence of annealed KBr:Cu+ crystals</title><author>Pérez-Salas, R ; Piters, T ; Aceves, R ; R, Héctor Riveros ; Rodríguez-Mijangos, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2734-f72322cd18af327ea9f7e2f4b55d864de1954dee1195505ff28b5be46bb251083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Absorption</topic><topic>Annealing</topic><topic>Copper</topic><topic>Crystals</topic><topic>Glow curves</topic><topic>Ionization</topic><topic>Irradiation</topic><topic>Low temperature</topic><topic>Luminescence</topic><topic>Nanoparticles</topic><topic>Physics</topic><topic>Thermoluminescence</topic><topic>Ultraviolet radiation</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pérez-Salas, R</creatorcontrib><creatorcontrib>Piters, T</creatorcontrib><creatorcontrib>Aceves, R</creatorcontrib><creatorcontrib>R, Héctor Riveros</creatorcontrib><creatorcontrib>Rodríguez-Mijangos, R</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pérez-Salas, R</au><au>Piters, T</au><au>Aceves, R</au><au>R, Héctor Riveros</au><au>Rodríguez-Mijangos, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of monochromatic UV radiation on the thermoluminescence of annealed KBr:Cu+ crystals</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>249</volume><issue>1</issue><spage>012024</spage><pages>012024-</pages><issn>1742-6596</issn><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Effects of monochromatic UV radiation on the thermoluminescence glow curve of annealed KBr:Cu crystals have been studied at low temperature. The crystals were irradiated at 20K and heated up to 300K at a rate of 0.1Ks−1, approximately. For all the irradiation wavelengths used, the glow curves consist of two peaks around 170 and 270K. Their intensities have been observed to depend on the wavelength of irradiation. Both emissions resulted to be more intense when the irradiation wavelengths was near the absorption peak of the Cu+ ion or near the band to band absorption of CuBr. Their intensities increase with increasing annealing time. The results are explained in terms of the formation of CuBr nanoparticles during the annealing treatment. The thermally stimulated recombination luminescence appears to be associated to the 3d94s-3d10 transitions of the Cu+ ion. So two possible mechanisms of the e-h pair formation could be used to explain the results: ionization of Cu+, Cu+ → Cu2+ + e, or ionization of halogen ions that are within the CuBr as Br¯ → Br0 + e. In the first case, the recombination luminescence is obtained from the trapping of electrons by the Cu2+ ions, while in the second case, the e-h recombination energy would be transferred to the Cu+ ions.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/249/1/012024</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1742-6596
ispartof Journal of physics. Conference series, 2010-11, Vol.249 (1), p.012024
issn 1742-6596
1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2580092166
source Institute of Physics Open Access Journal Titles
subjects Absorption
Annealing
Copper
Crystals
Glow curves
Ionization
Irradiation
Low temperature
Luminescence
Nanoparticles
Physics
Thermoluminescence
Ultraviolet radiation
Wavelengths
title Effects of monochromatic UV radiation on the thermoluminescence of annealed KBr:Cu+ crystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T10%3A23%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20monochromatic%20UV%20radiation%20on%20the%20thermoluminescence%20of%20annealed%20KBr:Cu+%20crystals&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=P%C3%A9rez-Salas,%20R&rft.date=2010-11-01&rft.volume=249&rft.issue=1&rft.spage=012024&rft.pages=012024-&rft.issn=1742-6596&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/249/1/012024&rft_dat=%3Cproquest_O3W%3E2580092166%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580092166&rft_id=info:pmid/&rfr_iscdi=true