Machine learning-quantitative structure property relationship (ML-QSPR) method for fuel physicochemical properties prediction of multiple fuel types
The workflow of virtual fuel screening by ML-QSPR and chemical kinetics. [Display omitted] •ML-QSPR method enables to predict 15 fuel properties of 23 fuel types.•QSPR-UOB 3.0 system extracts and digitalizes fuel molecular structure features.•ML algorithms describe the dependence of fuel properties...
Gespeichert in:
Veröffentlicht in: | Fuel (Guildford) 2021-11, Vol.304, p.121437, Article 121437 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 121437 |
container_title | Fuel (Guildford) |
container_volume | 304 |
creator | Li, Runzhao Herreros, Jose Martin Tsolakis, Athanasios Yang, Wenzhao |
description | The workflow of virtual fuel screening by ML-QSPR and chemical kinetics.
[Display omitted]
•ML-QSPR method enables to predict 15 fuel properties of 23 fuel types.•QSPR-UOB 3.0 system extracts and digitalizes fuel molecular structure features.•ML algorithms describe the dependence of fuel properties on chemical structure.•UOB Fuel Property Database provides a comprehensive dataset for model training.•ML-QSPR identifies molecules with desired properties to enable efficient & clean combustion.
A machine learning-quantitative structure property relationship (ML-QSPR) method is proposed to predict 15 fuel physicochemical properties of 23 fuel types. QSPR-UOB 3.0 functional group classification system is developed to extract and digitalize the molecular structure feature. ML algorithms are used to map the molecular structure feature and fuel properties as well as model parameter tuning. UOB Fuel Property Database (1797 pure compounds and 465 mixtures) is established to provide massive properties data for model training. Cross-validation is chosen to examine predictive precision, avoid overfitting and estimate inter/extrapolation capacity. ML-QSPR method has 4 distinct advantages compared to published statistical methods: (1) It applies to 15 properties of CN, RON, MON, Tm, Tb, ΔHvap, surface tension γ, LHV, liquid density ρ, YSI, IT, FP, VP, LFL, UFL. (2) It applies to 23 fuel types of alkanes, cycloalkanes, alkenes, cyclic alkenes, alkadienes, alkynes, alcohols, cycloalcohols, aldehydes, ketones, cyclic ketone, saturated esters, unsaturated esters, acyclic ethers, furans, other cyclic ethers, aromatics, carbonate ester, carboxylic anhydride, peroxide, hydroperoxide, polyfunctionals, carboxylic acids. (3) High predictive accuracy is achieved and the average R2 of 15 fuel properties reaches 0.9816. (4) The regression models display reasonable interpolation and extrapolation capacity to test new molecules. The success is attributed to 2 key factors: (1) QSPR-UOB 3.0 system accounts for the contribution of structural features, functional group interaction and fuel reactivity. (2) ML algorithms accurately capture the dependence of fuel properties on chemical structures. |
doi_str_mv | 10.1016/j.fuel.2021.121437 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2580075556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236121013168</els_id><sourcerecordid>2580075556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-5031922b1a4c54cf447420f33fb1a457798ae60a32149bb4baf9dd77f83840e3</originalsourceid><addsrcrecordid>eNp9kM1uGyEURlHUSnGdvkBXSN20i3H5NWOpmyhKmkiO0iTeI8xcOljjYQJMJL9HHriMJt12BYLvXD4OQl8oWVFC1z8OKzdCt2KE0RVlVHB1hha0VrxSVPIPaEFKqmJ8Tc_Rp5QOhBBVS7FAb_fGtr4H3IGJve__VC-j6bPPJvtXwCnH0eYxAh5iGCDmE47QlbvQp9YP-Nv9tnp8_v30HR8ht6HBLkQ8VcFDe0reBtvC0VvT_eM9pLKFxttpBg4OH8cu-6GDGcunAdIF-uhMl-Dz-7pEu5vr3dVttX34dXd1ua0sVyxXknC6YWxPjbBSWCeEEow4zt10JJXa1AbWxPAiZLPfi71xm6ZRytW8FgT4En2dx5ZuLyOkrA9hjH15UTNZF0NSynVJsTllY0gpgtND9EcTT5oSPcnXBz1V15N8Pcsv0M8ZglL_1UPUyXrobfl4BJt1E_z_8L_wCpCq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580075556</pqid></control><display><type>article</type><title>Machine learning-quantitative structure property relationship (ML-QSPR) method for fuel physicochemical properties prediction of multiple fuel types</title><source>Elsevier ScienceDirect Journals</source><creator>Li, Runzhao ; Herreros, Jose Martin ; Tsolakis, Athanasios ; Yang, Wenzhao</creator><creatorcontrib>Li, Runzhao ; Herreros, Jose Martin ; Tsolakis, Athanasios ; Yang, Wenzhao</creatorcontrib><description>The workflow of virtual fuel screening by ML-QSPR and chemical kinetics.
[Display omitted]
•ML-QSPR method enables to predict 15 fuel properties of 23 fuel types.•QSPR-UOB 3.0 system extracts and digitalizes fuel molecular structure features.•ML algorithms describe the dependence of fuel properties on chemical structure.•UOB Fuel Property Database provides a comprehensive dataset for model training.•ML-QSPR identifies molecules with desired properties to enable efficient & clean combustion.
A machine learning-quantitative structure property relationship (ML-QSPR) method is proposed to predict 15 fuel physicochemical properties of 23 fuel types. QSPR-UOB 3.0 functional group classification system is developed to extract and digitalize the molecular structure feature. ML algorithms are used to map the molecular structure feature and fuel properties as well as model parameter tuning. UOB Fuel Property Database (1797 pure compounds and 465 mixtures) is established to provide massive properties data for model training. Cross-validation is chosen to examine predictive precision, avoid overfitting and estimate inter/extrapolation capacity. ML-QSPR method has 4 distinct advantages compared to published statistical methods: (1) It applies to 15 properties of CN, RON, MON, Tm, Tb, ΔHvap, surface tension γ, LHV, liquid density ρ, YSI, IT, FP, VP, LFL, UFL. (2) It applies to 23 fuel types of alkanes, cycloalkanes, alkenes, cyclic alkenes, alkadienes, alkynes, alcohols, cycloalcohols, aldehydes, ketones, cyclic ketone, saturated esters, unsaturated esters, acyclic ethers, furans, other cyclic ethers, aromatics, carbonate ester, carboxylic anhydride, peroxide, hydroperoxide, polyfunctionals, carboxylic acids. (3) High predictive accuracy is achieved and the average R2 of 15 fuel properties reaches 0.9816. (4) The regression models display reasonable interpolation and extrapolation capacity to test new molecules. The success is attributed to 2 key factors: (1) QSPR-UOB 3.0 system accounts for the contribution of structural features, functional group interaction and fuel reactivity. (2) ML algorithms accurately capture the dependence of fuel properties on chemical structures.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2021.121437</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alcohols ; Aldehydes ; Algorithms ; Alkanes ; Alkenes ; Alkynes ; Aromatic compounds ; Carboxylic acids ; Esters ; Ethers ; Extrapolation ; Feature extraction ; Fuel molecular structure ; Fuels ; Functional groups ; Furans ; Interpolation ; Ketones ; Learning algorithms ; Machine learning ; Molecular structure ; Multiple fuel properties ; Multiple fuel types ; Pesticides ; Physicochemical properties ; Quantitative structure property relationship ; Regression analysis ; Regression models ; Ron protein ; Statistical analysis ; Statistical methods ; Structure-function relationships ; Surface tension</subject><ispartof>Fuel (Guildford), 2021-11, Vol.304, p.121437, Article 121437</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-5031922b1a4c54cf447420f33fb1a457798ae60a32149bb4baf9dd77f83840e3</citedby><cites>FETCH-LOGICAL-c372t-5031922b1a4c54cf447420f33fb1a457798ae60a32149bb4baf9dd77f83840e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0016236121013168$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Li, Runzhao</creatorcontrib><creatorcontrib>Herreros, Jose Martin</creatorcontrib><creatorcontrib>Tsolakis, Athanasios</creatorcontrib><creatorcontrib>Yang, Wenzhao</creatorcontrib><title>Machine learning-quantitative structure property relationship (ML-QSPR) method for fuel physicochemical properties prediction of multiple fuel types</title><title>Fuel (Guildford)</title><description>The workflow of virtual fuel screening by ML-QSPR and chemical kinetics.
[Display omitted]
•ML-QSPR method enables to predict 15 fuel properties of 23 fuel types.•QSPR-UOB 3.0 system extracts and digitalizes fuel molecular structure features.•ML algorithms describe the dependence of fuel properties on chemical structure.•UOB Fuel Property Database provides a comprehensive dataset for model training.•ML-QSPR identifies molecules with desired properties to enable efficient & clean combustion.
A machine learning-quantitative structure property relationship (ML-QSPR) method is proposed to predict 15 fuel physicochemical properties of 23 fuel types. QSPR-UOB 3.0 functional group classification system is developed to extract and digitalize the molecular structure feature. ML algorithms are used to map the molecular structure feature and fuel properties as well as model parameter tuning. UOB Fuel Property Database (1797 pure compounds and 465 mixtures) is established to provide massive properties data for model training. Cross-validation is chosen to examine predictive precision, avoid overfitting and estimate inter/extrapolation capacity. ML-QSPR method has 4 distinct advantages compared to published statistical methods: (1) It applies to 15 properties of CN, RON, MON, Tm, Tb, ΔHvap, surface tension γ, LHV, liquid density ρ, YSI, IT, FP, VP, LFL, UFL. (2) It applies to 23 fuel types of alkanes, cycloalkanes, alkenes, cyclic alkenes, alkadienes, alkynes, alcohols, cycloalcohols, aldehydes, ketones, cyclic ketone, saturated esters, unsaturated esters, acyclic ethers, furans, other cyclic ethers, aromatics, carbonate ester, carboxylic anhydride, peroxide, hydroperoxide, polyfunctionals, carboxylic acids. (3) High predictive accuracy is achieved and the average R2 of 15 fuel properties reaches 0.9816. (4) The regression models display reasonable interpolation and extrapolation capacity to test new molecules. The success is attributed to 2 key factors: (1) QSPR-UOB 3.0 system accounts for the contribution of structural features, functional group interaction and fuel reactivity. (2) ML algorithms accurately capture the dependence of fuel properties on chemical structures.</description><subject>Alcohols</subject><subject>Aldehydes</subject><subject>Algorithms</subject><subject>Alkanes</subject><subject>Alkenes</subject><subject>Alkynes</subject><subject>Aromatic compounds</subject><subject>Carboxylic acids</subject><subject>Esters</subject><subject>Ethers</subject><subject>Extrapolation</subject><subject>Feature extraction</subject><subject>Fuel molecular structure</subject><subject>Fuels</subject><subject>Functional groups</subject><subject>Furans</subject><subject>Interpolation</subject><subject>Ketones</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Molecular structure</subject><subject>Multiple fuel properties</subject><subject>Multiple fuel types</subject><subject>Pesticides</subject><subject>Physicochemical properties</subject><subject>Quantitative structure property relationship</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Ron protein</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Structure-function relationships</subject><subject>Surface tension</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1uGyEURlHUSnGdvkBXSN20i3H5NWOpmyhKmkiO0iTeI8xcOljjYQJMJL9HHriMJt12BYLvXD4OQl8oWVFC1z8OKzdCt2KE0RVlVHB1hha0VrxSVPIPaEFKqmJ8Tc_Rp5QOhBBVS7FAb_fGtr4H3IGJve__VC-j6bPPJvtXwCnH0eYxAh5iGCDmE47QlbvQp9YP-Nv9tnp8_v30HR8ht6HBLkQ8VcFDe0reBtvC0VvT_eM9pLKFxttpBg4OH8cu-6GDGcunAdIF-uhMl-Dz-7pEu5vr3dVttX34dXd1ua0sVyxXknC6YWxPjbBSWCeEEow4zt10JJXa1AbWxPAiZLPfi71xm6ZRytW8FgT4En2dx5ZuLyOkrA9hjH15UTNZF0NSynVJsTllY0gpgtND9EcTT5oSPcnXBz1V15N8Pcsv0M8ZglL_1UPUyXrobfl4BJt1E_z_8L_wCpCq</recordid><startdate>20211115</startdate><enddate>20211115</enddate><creator>Li, Runzhao</creator><creator>Herreros, Jose Martin</creator><creator>Tsolakis, Athanasios</creator><creator>Yang, Wenzhao</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20211115</creationdate><title>Machine learning-quantitative structure property relationship (ML-QSPR) method for fuel physicochemical properties prediction of multiple fuel types</title><author>Li, Runzhao ; Herreros, Jose Martin ; Tsolakis, Athanasios ; Yang, Wenzhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-5031922b1a4c54cf447420f33fb1a457798ae60a32149bb4baf9dd77f83840e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alcohols</topic><topic>Aldehydes</topic><topic>Algorithms</topic><topic>Alkanes</topic><topic>Alkenes</topic><topic>Alkynes</topic><topic>Aromatic compounds</topic><topic>Carboxylic acids</topic><topic>Esters</topic><topic>Ethers</topic><topic>Extrapolation</topic><topic>Feature extraction</topic><topic>Fuel molecular structure</topic><topic>Fuels</topic><topic>Functional groups</topic><topic>Furans</topic><topic>Interpolation</topic><topic>Ketones</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Molecular structure</topic><topic>Multiple fuel properties</topic><topic>Multiple fuel types</topic><topic>Pesticides</topic><topic>Physicochemical properties</topic><topic>Quantitative structure property relationship</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Ron protein</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Structure-function relationships</topic><topic>Surface tension</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Runzhao</creatorcontrib><creatorcontrib>Herreros, Jose Martin</creatorcontrib><creatorcontrib>Tsolakis, Athanasios</creatorcontrib><creatorcontrib>Yang, Wenzhao</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Runzhao</au><au>Herreros, Jose Martin</au><au>Tsolakis, Athanasios</au><au>Yang, Wenzhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning-quantitative structure property relationship (ML-QSPR) method for fuel physicochemical properties prediction of multiple fuel types</atitle><jtitle>Fuel (Guildford)</jtitle><date>2021-11-15</date><risdate>2021</risdate><volume>304</volume><spage>121437</spage><pages>121437-</pages><artnum>121437</artnum><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>The workflow of virtual fuel screening by ML-QSPR and chemical kinetics.
[Display omitted]
•ML-QSPR method enables to predict 15 fuel properties of 23 fuel types.•QSPR-UOB 3.0 system extracts and digitalizes fuel molecular structure features.•ML algorithms describe the dependence of fuel properties on chemical structure.•UOB Fuel Property Database provides a comprehensive dataset for model training.•ML-QSPR identifies molecules with desired properties to enable efficient & clean combustion.
A machine learning-quantitative structure property relationship (ML-QSPR) method is proposed to predict 15 fuel physicochemical properties of 23 fuel types. QSPR-UOB 3.0 functional group classification system is developed to extract and digitalize the molecular structure feature. ML algorithms are used to map the molecular structure feature and fuel properties as well as model parameter tuning. UOB Fuel Property Database (1797 pure compounds and 465 mixtures) is established to provide massive properties data for model training. Cross-validation is chosen to examine predictive precision, avoid overfitting and estimate inter/extrapolation capacity. ML-QSPR method has 4 distinct advantages compared to published statistical methods: (1) It applies to 15 properties of CN, RON, MON, Tm, Tb, ΔHvap, surface tension γ, LHV, liquid density ρ, YSI, IT, FP, VP, LFL, UFL. (2) It applies to 23 fuel types of alkanes, cycloalkanes, alkenes, cyclic alkenes, alkadienes, alkynes, alcohols, cycloalcohols, aldehydes, ketones, cyclic ketone, saturated esters, unsaturated esters, acyclic ethers, furans, other cyclic ethers, aromatics, carbonate ester, carboxylic anhydride, peroxide, hydroperoxide, polyfunctionals, carboxylic acids. (3) High predictive accuracy is achieved and the average R2 of 15 fuel properties reaches 0.9816. (4) The regression models display reasonable interpolation and extrapolation capacity to test new molecules. The success is attributed to 2 key factors: (1) QSPR-UOB 3.0 system accounts for the contribution of structural features, functional group interaction and fuel reactivity. (2) ML algorithms accurately capture the dependence of fuel properties on chemical structures.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2021.121437</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-2361 |
ispartof | Fuel (Guildford), 2021-11, Vol.304, p.121437, Article 121437 |
issn | 0016-2361 1873-7153 |
language | eng |
recordid | cdi_proquest_journals_2580075556 |
source | Elsevier ScienceDirect Journals |
subjects | Alcohols Aldehydes Algorithms Alkanes Alkenes Alkynes Aromatic compounds Carboxylic acids Esters Ethers Extrapolation Feature extraction Fuel molecular structure Fuels Functional groups Furans Interpolation Ketones Learning algorithms Machine learning Molecular structure Multiple fuel properties Multiple fuel types Pesticides Physicochemical properties Quantitative structure property relationship Regression analysis Regression models Ron protein Statistical analysis Statistical methods Structure-function relationships Surface tension |
title | Machine learning-quantitative structure property relationship (ML-QSPR) method for fuel physicochemical properties prediction of multiple fuel types |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T23%3A53%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning-quantitative%20structure%20property%20relationship%20(ML-QSPR)%20method%20for%20fuel%20physicochemical%20properties%20prediction%20of%20multiple%20fuel%20types&rft.jtitle=Fuel%20(Guildford)&rft.au=Li,%20Runzhao&rft.date=2021-11-15&rft.volume=304&rft.spage=121437&rft.pages=121437-&rft.artnum=121437&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2021.121437&rft_dat=%3Cproquest_cross%3E2580075556%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580075556&rft_id=info:pmid/&rft_els_id=S0016236121013168&rfr_iscdi=true |