Machine learning-quantitative structure property relationship (ML-QSPR) method for fuel physicochemical properties prediction of multiple fuel types

The workflow of virtual fuel screening by ML-QSPR and chemical kinetics. [Display omitted] •ML-QSPR method enables to predict 15 fuel properties of 23 fuel types.•QSPR-UOB 3.0 system extracts and digitalizes fuel molecular structure features.•ML algorithms describe the dependence of fuel properties...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel (Guildford) 2021-11, Vol.304, p.121437, Article 121437
Hauptverfasser: Li, Runzhao, Herreros, Jose Martin, Tsolakis, Athanasios, Yang, Wenzhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 121437
container_title Fuel (Guildford)
container_volume 304
creator Li, Runzhao
Herreros, Jose Martin
Tsolakis, Athanasios
Yang, Wenzhao
description The workflow of virtual fuel screening by ML-QSPR and chemical kinetics. [Display omitted] •ML-QSPR method enables to predict 15 fuel properties of 23 fuel types.•QSPR-UOB 3.0 system extracts and digitalizes fuel molecular structure features.•ML algorithms describe the dependence of fuel properties on chemical structure.•UOB Fuel Property Database provides a comprehensive dataset for model training.•ML-QSPR identifies molecules with desired properties to enable efficient & clean combustion. A machine learning-quantitative structure property relationship (ML-QSPR) method is proposed to predict 15 fuel physicochemical properties of 23 fuel types. QSPR-UOB 3.0 functional group classification system is developed to extract and digitalize the molecular structure feature. ML algorithms are used to map the molecular structure feature and fuel properties as well as model parameter tuning. UOB Fuel Property Database (1797 pure compounds and 465 mixtures) is established to provide massive properties data for model training. Cross-validation is chosen to examine predictive precision, avoid overfitting and estimate inter/extrapolation capacity. ML-QSPR method has 4 distinct advantages compared to published statistical methods: (1) It applies to 15 properties of CN, RON, MON, Tm, Tb, ΔHvap, surface tension γ, LHV, liquid density ρ, YSI, IT, FP, VP, LFL, UFL. (2) It applies to 23 fuel types of alkanes, cycloalkanes, alkenes, cyclic alkenes, alkadienes, alkynes, alcohols, cycloalcohols, aldehydes, ketones, cyclic ketone, saturated esters, unsaturated esters, acyclic ethers, furans, other cyclic ethers, aromatics, carbonate ester, carboxylic anhydride, peroxide, hydroperoxide, polyfunctionals, carboxylic acids. (3) High predictive accuracy is achieved and the average R2 of 15 fuel properties reaches 0.9816. (4) The regression models display reasonable interpolation and extrapolation capacity to test new molecules. The success is attributed to 2 key factors: (1) QSPR-UOB 3.0 system accounts for the contribution of structural features, functional group interaction and fuel reactivity. (2) ML algorithms accurately capture the dependence of fuel properties on chemical structures.
doi_str_mv 10.1016/j.fuel.2021.121437
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2580075556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236121013168</els_id><sourcerecordid>2580075556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-5031922b1a4c54cf447420f33fb1a457798ae60a32149bb4baf9dd77f83840e3</originalsourceid><addsrcrecordid>eNp9kM1uGyEURlHUSnGdvkBXSN20i3H5NWOpmyhKmkiO0iTeI8xcOljjYQJMJL9HHriMJt12BYLvXD4OQl8oWVFC1z8OKzdCt2KE0RVlVHB1hha0VrxSVPIPaEFKqmJ8Tc_Rp5QOhBBVS7FAb_fGtr4H3IGJve__VC-j6bPPJvtXwCnH0eYxAh5iGCDmE47QlbvQp9YP-Nv9tnp8_v30HR8ht6HBLkQ8VcFDe0reBtvC0VvT_eM9pLKFxttpBg4OH8cu-6GDGcunAdIF-uhMl-Dz-7pEu5vr3dVttX34dXd1ua0sVyxXknC6YWxPjbBSWCeEEow4zt10JJXa1AbWxPAiZLPfi71xm6ZRytW8FgT4En2dx5ZuLyOkrA9hjH15UTNZF0NSynVJsTllY0gpgtND9EcTT5oSPcnXBz1V15N8Pcsv0M8ZglL_1UPUyXrobfl4BJt1E_z_8L_wCpCq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580075556</pqid></control><display><type>article</type><title>Machine learning-quantitative structure property relationship (ML-QSPR) method for fuel physicochemical properties prediction of multiple fuel types</title><source>Elsevier ScienceDirect Journals</source><creator>Li, Runzhao ; Herreros, Jose Martin ; Tsolakis, Athanasios ; Yang, Wenzhao</creator><creatorcontrib>Li, Runzhao ; Herreros, Jose Martin ; Tsolakis, Athanasios ; Yang, Wenzhao</creatorcontrib><description>The workflow of virtual fuel screening by ML-QSPR and chemical kinetics. [Display omitted] •ML-QSPR method enables to predict 15 fuel properties of 23 fuel types.•QSPR-UOB 3.0 system extracts and digitalizes fuel molecular structure features.•ML algorithms describe the dependence of fuel properties on chemical structure.•UOB Fuel Property Database provides a comprehensive dataset for model training.•ML-QSPR identifies molecules with desired properties to enable efficient &amp; clean combustion. A machine learning-quantitative structure property relationship (ML-QSPR) method is proposed to predict 15 fuel physicochemical properties of 23 fuel types. QSPR-UOB 3.0 functional group classification system is developed to extract and digitalize the molecular structure feature. ML algorithms are used to map the molecular structure feature and fuel properties as well as model parameter tuning. UOB Fuel Property Database (1797 pure compounds and 465 mixtures) is established to provide massive properties data for model training. Cross-validation is chosen to examine predictive precision, avoid overfitting and estimate inter/extrapolation capacity. ML-QSPR method has 4 distinct advantages compared to published statistical methods: (1) It applies to 15 properties of CN, RON, MON, Tm, Tb, ΔHvap, surface tension γ, LHV, liquid density ρ, YSI, IT, FP, VP, LFL, UFL. (2) It applies to 23 fuel types of alkanes, cycloalkanes, alkenes, cyclic alkenes, alkadienes, alkynes, alcohols, cycloalcohols, aldehydes, ketones, cyclic ketone, saturated esters, unsaturated esters, acyclic ethers, furans, other cyclic ethers, aromatics, carbonate ester, carboxylic anhydride, peroxide, hydroperoxide, polyfunctionals, carboxylic acids. (3) High predictive accuracy is achieved and the average R2 of 15 fuel properties reaches 0.9816. (4) The regression models display reasonable interpolation and extrapolation capacity to test new molecules. The success is attributed to 2 key factors: (1) QSPR-UOB 3.0 system accounts for the contribution of structural features, functional group interaction and fuel reactivity. (2) ML algorithms accurately capture the dependence of fuel properties on chemical structures.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2021.121437</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alcohols ; Aldehydes ; Algorithms ; Alkanes ; Alkenes ; Alkynes ; Aromatic compounds ; Carboxylic acids ; Esters ; Ethers ; Extrapolation ; Feature extraction ; Fuel molecular structure ; Fuels ; Functional groups ; Furans ; Interpolation ; Ketones ; Learning algorithms ; Machine learning ; Molecular structure ; Multiple fuel properties ; Multiple fuel types ; Pesticides ; Physicochemical properties ; Quantitative structure property relationship ; Regression analysis ; Regression models ; Ron protein ; Statistical analysis ; Statistical methods ; Structure-function relationships ; Surface tension</subject><ispartof>Fuel (Guildford), 2021-11, Vol.304, p.121437, Article 121437</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-5031922b1a4c54cf447420f33fb1a457798ae60a32149bb4baf9dd77f83840e3</citedby><cites>FETCH-LOGICAL-c372t-5031922b1a4c54cf447420f33fb1a457798ae60a32149bb4baf9dd77f83840e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0016236121013168$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Li, Runzhao</creatorcontrib><creatorcontrib>Herreros, Jose Martin</creatorcontrib><creatorcontrib>Tsolakis, Athanasios</creatorcontrib><creatorcontrib>Yang, Wenzhao</creatorcontrib><title>Machine learning-quantitative structure property relationship (ML-QSPR) method for fuel physicochemical properties prediction of multiple fuel types</title><title>Fuel (Guildford)</title><description>The workflow of virtual fuel screening by ML-QSPR and chemical kinetics. [Display omitted] •ML-QSPR method enables to predict 15 fuel properties of 23 fuel types.•QSPR-UOB 3.0 system extracts and digitalizes fuel molecular structure features.•ML algorithms describe the dependence of fuel properties on chemical structure.•UOB Fuel Property Database provides a comprehensive dataset for model training.•ML-QSPR identifies molecules with desired properties to enable efficient &amp; clean combustion. A machine learning-quantitative structure property relationship (ML-QSPR) method is proposed to predict 15 fuel physicochemical properties of 23 fuel types. QSPR-UOB 3.0 functional group classification system is developed to extract and digitalize the molecular structure feature. ML algorithms are used to map the molecular structure feature and fuel properties as well as model parameter tuning. UOB Fuel Property Database (1797 pure compounds and 465 mixtures) is established to provide massive properties data for model training. Cross-validation is chosen to examine predictive precision, avoid overfitting and estimate inter/extrapolation capacity. ML-QSPR method has 4 distinct advantages compared to published statistical methods: (1) It applies to 15 properties of CN, RON, MON, Tm, Tb, ΔHvap, surface tension γ, LHV, liquid density ρ, YSI, IT, FP, VP, LFL, UFL. (2) It applies to 23 fuel types of alkanes, cycloalkanes, alkenes, cyclic alkenes, alkadienes, alkynes, alcohols, cycloalcohols, aldehydes, ketones, cyclic ketone, saturated esters, unsaturated esters, acyclic ethers, furans, other cyclic ethers, aromatics, carbonate ester, carboxylic anhydride, peroxide, hydroperoxide, polyfunctionals, carboxylic acids. (3) High predictive accuracy is achieved and the average R2 of 15 fuel properties reaches 0.9816. (4) The regression models display reasonable interpolation and extrapolation capacity to test new molecules. The success is attributed to 2 key factors: (1) QSPR-UOB 3.0 system accounts for the contribution of structural features, functional group interaction and fuel reactivity. (2) ML algorithms accurately capture the dependence of fuel properties on chemical structures.</description><subject>Alcohols</subject><subject>Aldehydes</subject><subject>Algorithms</subject><subject>Alkanes</subject><subject>Alkenes</subject><subject>Alkynes</subject><subject>Aromatic compounds</subject><subject>Carboxylic acids</subject><subject>Esters</subject><subject>Ethers</subject><subject>Extrapolation</subject><subject>Feature extraction</subject><subject>Fuel molecular structure</subject><subject>Fuels</subject><subject>Functional groups</subject><subject>Furans</subject><subject>Interpolation</subject><subject>Ketones</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Molecular structure</subject><subject>Multiple fuel properties</subject><subject>Multiple fuel types</subject><subject>Pesticides</subject><subject>Physicochemical properties</subject><subject>Quantitative structure property relationship</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Ron protein</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Structure-function relationships</subject><subject>Surface tension</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1uGyEURlHUSnGdvkBXSN20i3H5NWOpmyhKmkiO0iTeI8xcOljjYQJMJL9HHriMJt12BYLvXD4OQl8oWVFC1z8OKzdCt2KE0RVlVHB1hha0VrxSVPIPaEFKqmJ8Tc_Rp5QOhBBVS7FAb_fGtr4H3IGJve__VC-j6bPPJvtXwCnH0eYxAh5iGCDmE47QlbvQp9YP-Nv9tnp8_v30HR8ht6HBLkQ8VcFDe0reBtvC0VvT_eM9pLKFxttpBg4OH8cu-6GDGcunAdIF-uhMl-Dz-7pEu5vr3dVttX34dXd1ua0sVyxXknC6YWxPjbBSWCeEEow4zt10JJXa1AbWxPAiZLPfi71xm6ZRytW8FgT4En2dx5ZuLyOkrA9hjH15UTNZF0NSynVJsTllY0gpgtND9EcTT5oSPcnXBz1V15N8Pcsv0M8ZglL_1UPUyXrobfl4BJt1E_z_8L_wCpCq</recordid><startdate>20211115</startdate><enddate>20211115</enddate><creator>Li, Runzhao</creator><creator>Herreros, Jose Martin</creator><creator>Tsolakis, Athanasios</creator><creator>Yang, Wenzhao</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20211115</creationdate><title>Machine learning-quantitative structure property relationship (ML-QSPR) method for fuel physicochemical properties prediction of multiple fuel types</title><author>Li, Runzhao ; Herreros, Jose Martin ; Tsolakis, Athanasios ; Yang, Wenzhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-5031922b1a4c54cf447420f33fb1a457798ae60a32149bb4baf9dd77f83840e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alcohols</topic><topic>Aldehydes</topic><topic>Algorithms</topic><topic>Alkanes</topic><topic>Alkenes</topic><topic>Alkynes</topic><topic>Aromatic compounds</topic><topic>Carboxylic acids</topic><topic>Esters</topic><topic>Ethers</topic><topic>Extrapolation</topic><topic>Feature extraction</topic><topic>Fuel molecular structure</topic><topic>Fuels</topic><topic>Functional groups</topic><topic>Furans</topic><topic>Interpolation</topic><topic>Ketones</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Molecular structure</topic><topic>Multiple fuel properties</topic><topic>Multiple fuel types</topic><topic>Pesticides</topic><topic>Physicochemical properties</topic><topic>Quantitative structure property relationship</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Ron protein</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Structure-function relationships</topic><topic>Surface tension</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Runzhao</creatorcontrib><creatorcontrib>Herreros, Jose Martin</creatorcontrib><creatorcontrib>Tsolakis, Athanasios</creatorcontrib><creatorcontrib>Yang, Wenzhao</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Runzhao</au><au>Herreros, Jose Martin</au><au>Tsolakis, Athanasios</au><au>Yang, Wenzhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning-quantitative structure property relationship (ML-QSPR) method for fuel physicochemical properties prediction of multiple fuel types</atitle><jtitle>Fuel (Guildford)</jtitle><date>2021-11-15</date><risdate>2021</risdate><volume>304</volume><spage>121437</spage><pages>121437-</pages><artnum>121437</artnum><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>The workflow of virtual fuel screening by ML-QSPR and chemical kinetics. [Display omitted] •ML-QSPR method enables to predict 15 fuel properties of 23 fuel types.•QSPR-UOB 3.0 system extracts and digitalizes fuel molecular structure features.•ML algorithms describe the dependence of fuel properties on chemical structure.•UOB Fuel Property Database provides a comprehensive dataset for model training.•ML-QSPR identifies molecules with desired properties to enable efficient &amp; clean combustion. A machine learning-quantitative structure property relationship (ML-QSPR) method is proposed to predict 15 fuel physicochemical properties of 23 fuel types. QSPR-UOB 3.0 functional group classification system is developed to extract and digitalize the molecular structure feature. ML algorithms are used to map the molecular structure feature and fuel properties as well as model parameter tuning. UOB Fuel Property Database (1797 pure compounds and 465 mixtures) is established to provide massive properties data for model training. Cross-validation is chosen to examine predictive precision, avoid overfitting and estimate inter/extrapolation capacity. ML-QSPR method has 4 distinct advantages compared to published statistical methods: (1) It applies to 15 properties of CN, RON, MON, Tm, Tb, ΔHvap, surface tension γ, LHV, liquid density ρ, YSI, IT, FP, VP, LFL, UFL. (2) It applies to 23 fuel types of alkanes, cycloalkanes, alkenes, cyclic alkenes, alkadienes, alkynes, alcohols, cycloalcohols, aldehydes, ketones, cyclic ketone, saturated esters, unsaturated esters, acyclic ethers, furans, other cyclic ethers, aromatics, carbonate ester, carboxylic anhydride, peroxide, hydroperoxide, polyfunctionals, carboxylic acids. (3) High predictive accuracy is achieved and the average R2 of 15 fuel properties reaches 0.9816. (4) The regression models display reasonable interpolation and extrapolation capacity to test new molecules. The success is attributed to 2 key factors: (1) QSPR-UOB 3.0 system accounts for the contribution of structural features, functional group interaction and fuel reactivity. (2) ML algorithms accurately capture the dependence of fuel properties on chemical structures.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2021.121437</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0016-2361
ispartof Fuel (Guildford), 2021-11, Vol.304, p.121437, Article 121437
issn 0016-2361
1873-7153
language eng
recordid cdi_proquest_journals_2580075556
source Elsevier ScienceDirect Journals
subjects Alcohols
Aldehydes
Algorithms
Alkanes
Alkenes
Alkynes
Aromatic compounds
Carboxylic acids
Esters
Ethers
Extrapolation
Feature extraction
Fuel molecular structure
Fuels
Functional groups
Furans
Interpolation
Ketones
Learning algorithms
Machine learning
Molecular structure
Multiple fuel properties
Multiple fuel types
Pesticides
Physicochemical properties
Quantitative structure property relationship
Regression analysis
Regression models
Ron protein
Statistical analysis
Statistical methods
Structure-function relationships
Surface tension
title Machine learning-quantitative structure property relationship (ML-QSPR) method for fuel physicochemical properties prediction of multiple fuel types
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T23%3A53%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning-quantitative%20structure%20property%20relationship%20(ML-QSPR)%20method%20for%20fuel%20physicochemical%20properties%20prediction%20of%20multiple%20fuel%20types&rft.jtitle=Fuel%20(Guildford)&rft.au=Li,%20Runzhao&rft.date=2021-11-15&rft.volume=304&rft.spage=121437&rft.pages=121437-&rft.artnum=121437&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2021.121437&rft_dat=%3Cproquest_cross%3E2580075556%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580075556&rft_id=info:pmid/&rft_els_id=S0016236121013168&rfr_iscdi=true