Novel molecular insight into the discrepant distributions for ionic surfactants in light oil/water and heavy oil/water systems

[Display omitted] •Discrepant distributions of SDS in two oil/water systems are elaborated by MD simulation.•Heavy oil phase provides the more suitable environment for SDS molecule than water phase.•SDS-Water-Asphaltene (S-W-A) ternary structure is fabricated via the hydrogen bonds.•S-W-A structure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel (Guildford) 2021-11, Vol.304, p.121460, Article 121460
Hauptverfasser: Jia, Han, Lian, Peng, Yan, Hui, Yuan, Jie, Tang, Hongtao, Wei, Xin, Song, Jinyong, He, Juan, Lv, Kaihe, Liu, Dexin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 121460
container_title Fuel (Guildford)
container_volume 304
creator Jia, Han
Lian, Peng
Yan, Hui
Yuan, Jie
Tang, Hongtao
Wei, Xin
Song, Jinyong
He, Juan
Lv, Kaihe
Liu, Dexin
description [Display omitted] •Discrepant distributions of SDS in two oil/water systems are elaborated by MD simulation.•Heavy oil phase provides the more suitable environment for SDS molecule than water phase.•SDS-Water-Asphaltene (S-W-A) ternary structure is fabricated via the hydrogen bonds.•S-W-A structure is responsible for the detention of SDS molecule in heavy oil phase. Surfactant exhibits great displacement efficiency for the light oil (aliphatic and aromatic hydrocarbons) reservoir, whereas the heavy components (resins and asphaltenes) in crude oil could seriously affect the interfacial activity of surfactants. Then two simulation systems (light oil/water and heavy oil/water systems) were established and the distribution behaviors of the anionic surfactant sodium dodecyl sulfate (SDS) in above two systems were investigated by molecular dynamics (MD) simulation. The simulation results revealed that some SDS molecules could stay in the heavy oil phase but not in the light oil phase. The potential of mean force (PMF) of two systems were calculated to further probe the Gibbs free energy change in the movement process of SDS molecules form water phase to oil phase. The interaction mechanisms of water/surfactant/oil in the movement process were illustrated by the corresponding system configurations and reduced density gradient (RDG) method. The water molecules in hydration shell could be pulled into heavy oil phase coupled with SDS molecules and connect with SDS and asphaltene molecules to fabricate the SDS-Water-Asphaltenes (S-W-A) ternary structure via hydrogen bonds. Furthermore, the interaction energy calculation directly demonstrated the formation of S-W-A structure should be responsible for the discrepant distributions of surfactants in light oil/water and heavy oil/water systems.
doi_str_mv 10.1016/j.fuel.2021.121460
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2580075303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236121013399</els_id><sourcerecordid>2580075303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-c3ea9b2e82e0d1dbb98e9e12e5f33b5a2161adcb7c16e9f33ff7fafba2ab6b1a3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPA827z0f0CL1L8AtGLnkOSndgs201NspVe_O1mrQdPXmaG4Xkn4UHokpKcElouutyM0OeMMJpTRpclOUIzWlc8q2jBj9GMJCpjvKSn6CyEjhBS1cVyhr6e3Q56vHE96LGXHtsh2Pd1TD06HNeAWxu0h60c4jRGb9UYrRsCNi7RbrAah9EbqWNCQsrh_ueAs_3iU0bwWA4tXoPc7f_swj5E2IRzdGJkH-Dit8_R293t6-ohe3q5f1zdPGWaszqmCrJRDGoGpKWtUk0NDVAGheFcFZLRkspWq0rTEpq0M6Yy0ijJpCoVlXyOrg53t959jBCi6Nzoh_SkYEWdZBSc8ESxA6W9C8GDEVtvN9LvBSVi8iw6MXkWk2dx8JxC14cQpP_vLHgRtIVBQ2s96ChaZ_-LfwP7N4q8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580075303</pqid></control><display><type>article</type><title>Novel molecular insight into the discrepant distributions for ionic surfactants in light oil/water and heavy oil/water systems</title><source>Elsevier ScienceDirect Journals</source><creator>Jia, Han ; Lian, Peng ; Yan, Hui ; Yuan, Jie ; Tang, Hongtao ; Wei, Xin ; Song, Jinyong ; He, Juan ; Lv, Kaihe ; Liu, Dexin</creator><creatorcontrib>Jia, Han ; Lian, Peng ; Yan, Hui ; Yuan, Jie ; Tang, Hongtao ; Wei, Xin ; Song, Jinyong ; He, Juan ; Lv, Kaihe ; Liu, Dexin</creatorcontrib><description>[Display omitted] •Discrepant distributions of SDS in two oil/water systems are elaborated by MD simulation.•Heavy oil phase provides the more suitable environment for SDS molecule than water phase.•SDS-Water-Asphaltene (S-W-A) ternary structure is fabricated via the hydrogen bonds.•S-W-A structure is responsible for the detention of SDS molecule in heavy oil phase. Surfactant exhibits great displacement efficiency for the light oil (aliphatic and aromatic hydrocarbons) reservoir, whereas the heavy components (resins and asphaltenes) in crude oil could seriously affect the interfacial activity of surfactants. Then two simulation systems (light oil/water and heavy oil/water systems) were established and the distribution behaviors of the anionic surfactant sodium dodecyl sulfate (SDS) in above two systems were investigated by molecular dynamics (MD) simulation. The simulation results revealed that some SDS molecules could stay in the heavy oil phase but not in the light oil phase. The potential of mean force (PMF) of two systems were calculated to further probe the Gibbs free energy change in the movement process of SDS molecules form water phase to oil phase. The interaction mechanisms of water/surfactant/oil in the movement process were illustrated by the corresponding system configurations and reduced density gradient (RDG) method. The water molecules in hydration shell could be pulled into heavy oil phase coupled with SDS molecules and connect with SDS and asphaltene molecules to fabricate the SDS-Water-Asphaltenes (S-W-A) ternary structure via hydrogen bonds. Furthermore, the interaction energy calculation directly demonstrated the formation of S-W-A structure should be responsible for the discrepant distributions of surfactants in light oil/water and heavy oil/water systems.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2021.121460</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Aromatic hydrocarbons ; Asphaltenes ; Crude oil ; Distribution behavior ; Free energy ; Gibbs free energy ; Heavy oil ; Hydrogen bonding ; Hydrogen bonds ; Intermolecular interaction ; Ionic surface active agents ; Mathematical analysis ; Molecular dynamics ; Molecular dynamics simulation ; Oil ; Pollutants ; Resins ; Simulation ; Sodium dodecyl sulfate ; Sodium lauryl sulfate ; Surfactant ; Surfactants ; Water chemistry ; Water distribution</subject><ispartof>Fuel (Guildford), 2021-11, Vol.304, p.121460, Article 121460</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-c3ea9b2e82e0d1dbb98e9e12e5f33b5a2161adcb7c16e9f33ff7fafba2ab6b1a3</citedby><cites>FETCH-LOGICAL-c328t-c3ea9b2e82e0d1dbb98e9e12e5f33b5a2161adcb7c16e9f33ff7fafba2ab6b1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fuel.2021.121460$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Jia, Han</creatorcontrib><creatorcontrib>Lian, Peng</creatorcontrib><creatorcontrib>Yan, Hui</creatorcontrib><creatorcontrib>Yuan, Jie</creatorcontrib><creatorcontrib>Tang, Hongtao</creatorcontrib><creatorcontrib>Wei, Xin</creatorcontrib><creatorcontrib>Song, Jinyong</creatorcontrib><creatorcontrib>He, Juan</creatorcontrib><creatorcontrib>Lv, Kaihe</creatorcontrib><creatorcontrib>Liu, Dexin</creatorcontrib><title>Novel molecular insight into the discrepant distributions for ionic surfactants in light oil/water and heavy oil/water systems</title><title>Fuel (Guildford)</title><description>[Display omitted] •Discrepant distributions of SDS in two oil/water systems are elaborated by MD simulation.•Heavy oil phase provides the more suitable environment for SDS molecule than water phase.•SDS-Water-Asphaltene (S-W-A) ternary structure is fabricated via the hydrogen bonds.•S-W-A structure is responsible for the detention of SDS molecule in heavy oil phase. Surfactant exhibits great displacement efficiency for the light oil (aliphatic and aromatic hydrocarbons) reservoir, whereas the heavy components (resins and asphaltenes) in crude oil could seriously affect the interfacial activity of surfactants. Then two simulation systems (light oil/water and heavy oil/water systems) were established and the distribution behaviors of the anionic surfactant sodium dodecyl sulfate (SDS) in above two systems were investigated by molecular dynamics (MD) simulation. The simulation results revealed that some SDS molecules could stay in the heavy oil phase but not in the light oil phase. The potential of mean force (PMF) of two systems were calculated to further probe the Gibbs free energy change in the movement process of SDS molecules form water phase to oil phase. The interaction mechanisms of water/surfactant/oil in the movement process were illustrated by the corresponding system configurations and reduced density gradient (RDG) method. The water molecules in hydration shell could be pulled into heavy oil phase coupled with SDS molecules and connect with SDS and asphaltene molecules to fabricate the SDS-Water-Asphaltenes (S-W-A) ternary structure via hydrogen bonds. Furthermore, the interaction energy calculation directly demonstrated the formation of S-W-A structure should be responsible for the discrepant distributions of surfactants in light oil/water and heavy oil/water systems.</description><subject>Aromatic hydrocarbons</subject><subject>Asphaltenes</subject><subject>Crude oil</subject><subject>Distribution behavior</subject><subject>Free energy</subject><subject>Gibbs free energy</subject><subject>Heavy oil</subject><subject>Hydrogen bonding</subject><subject>Hydrogen bonds</subject><subject>Intermolecular interaction</subject><subject>Ionic surface active agents</subject><subject>Mathematical analysis</subject><subject>Molecular dynamics</subject><subject>Molecular dynamics simulation</subject><subject>Oil</subject><subject>Pollutants</subject><subject>Resins</subject><subject>Simulation</subject><subject>Sodium dodecyl sulfate</subject><subject>Sodium lauryl sulfate</subject><subject>Surfactant</subject><subject>Surfactants</subject><subject>Water chemistry</subject><subject>Water distribution</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPA827z0f0CL1L8AtGLnkOSndgs201NspVe_O1mrQdPXmaG4Xkn4UHokpKcElouutyM0OeMMJpTRpclOUIzWlc8q2jBj9GMJCpjvKSn6CyEjhBS1cVyhr6e3Q56vHE96LGXHtsh2Pd1TD06HNeAWxu0h60c4jRGb9UYrRsCNi7RbrAah9EbqWNCQsrh_ueAs_3iU0bwWA4tXoPc7f_swj5E2IRzdGJkH-Dit8_R293t6-ohe3q5f1zdPGWaszqmCrJRDGoGpKWtUk0NDVAGheFcFZLRkspWq0rTEpq0M6Yy0ijJpCoVlXyOrg53t959jBCi6Nzoh_SkYEWdZBSc8ESxA6W9C8GDEVtvN9LvBSVi8iw6MXkWk2dx8JxC14cQpP_vLHgRtIVBQ2s96ChaZ_-LfwP7N4q8</recordid><startdate>20211115</startdate><enddate>20211115</enddate><creator>Jia, Han</creator><creator>Lian, Peng</creator><creator>Yan, Hui</creator><creator>Yuan, Jie</creator><creator>Tang, Hongtao</creator><creator>Wei, Xin</creator><creator>Song, Jinyong</creator><creator>He, Juan</creator><creator>Lv, Kaihe</creator><creator>Liu, Dexin</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20211115</creationdate><title>Novel molecular insight into the discrepant distributions for ionic surfactants in light oil/water and heavy oil/water systems</title><author>Jia, Han ; Lian, Peng ; Yan, Hui ; Yuan, Jie ; Tang, Hongtao ; Wei, Xin ; Song, Jinyong ; He, Juan ; Lv, Kaihe ; Liu, Dexin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-c3ea9b2e82e0d1dbb98e9e12e5f33b5a2161adcb7c16e9f33ff7fafba2ab6b1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aromatic hydrocarbons</topic><topic>Asphaltenes</topic><topic>Crude oil</topic><topic>Distribution behavior</topic><topic>Free energy</topic><topic>Gibbs free energy</topic><topic>Heavy oil</topic><topic>Hydrogen bonding</topic><topic>Hydrogen bonds</topic><topic>Intermolecular interaction</topic><topic>Ionic surface active agents</topic><topic>Mathematical analysis</topic><topic>Molecular dynamics</topic><topic>Molecular dynamics simulation</topic><topic>Oil</topic><topic>Pollutants</topic><topic>Resins</topic><topic>Simulation</topic><topic>Sodium dodecyl sulfate</topic><topic>Sodium lauryl sulfate</topic><topic>Surfactant</topic><topic>Surfactants</topic><topic>Water chemistry</topic><topic>Water distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Han</creatorcontrib><creatorcontrib>Lian, Peng</creatorcontrib><creatorcontrib>Yan, Hui</creatorcontrib><creatorcontrib>Yuan, Jie</creatorcontrib><creatorcontrib>Tang, Hongtao</creatorcontrib><creatorcontrib>Wei, Xin</creatorcontrib><creatorcontrib>Song, Jinyong</creatorcontrib><creatorcontrib>He, Juan</creatorcontrib><creatorcontrib>Lv, Kaihe</creatorcontrib><creatorcontrib>Liu, Dexin</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Han</au><au>Lian, Peng</au><au>Yan, Hui</au><au>Yuan, Jie</au><au>Tang, Hongtao</au><au>Wei, Xin</au><au>Song, Jinyong</au><au>He, Juan</au><au>Lv, Kaihe</au><au>Liu, Dexin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel molecular insight into the discrepant distributions for ionic surfactants in light oil/water and heavy oil/water systems</atitle><jtitle>Fuel (Guildford)</jtitle><date>2021-11-15</date><risdate>2021</risdate><volume>304</volume><spage>121460</spage><pages>121460-</pages><artnum>121460</artnum><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>[Display omitted] •Discrepant distributions of SDS in two oil/water systems are elaborated by MD simulation.•Heavy oil phase provides the more suitable environment for SDS molecule than water phase.•SDS-Water-Asphaltene (S-W-A) ternary structure is fabricated via the hydrogen bonds.•S-W-A structure is responsible for the detention of SDS molecule in heavy oil phase. Surfactant exhibits great displacement efficiency for the light oil (aliphatic and aromatic hydrocarbons) reservoir, whereas the heavy components (resins and asphaltenes) in crude oil could seriously affect the interfacial activity of surfactants. Then two simulation systems (light oil/water and heavy oil/water systems) were established and the distribution behaviors of the anionic surfactant sodium dodecyl sulfate (SDS) in above two systems were investigated by molecular dynamics (MD) simulation. The simulation results revealed that some SDS molecules could stay in the heavy oil phase but not in the light oil phase. The potential of mean force (PMF) of two systems were calculated to further probe the Gibbs free energy change in the movement process of SDS molecules form water phase to oil phase. The interaction mechanisms of water/surfactant/oil in the movement process were illustrated by the corresponding system configurations and reduced density gradient (RDG) method. The water molecules in hydration shell could be pulled into heavy oil phase coupled with SDS molecules and connect with SDS and asphaltene molecules to fabricate the SDS-Water-Asphaltenes (S-W-A) ternary structure via hydrogen bonds. Furthermore, the interaction energy calculation directly demonstrated the formation of S-W-A structure should be responsible for the discrepant distributions of surfactants in light oil/water and heavy oil/water systems.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2021.121460</doi></addata></record>
fulltext fulltext
identifier ISSN: 0016-2361
ispartof Fuel (Guildford), 2021-11, Vol.304, p.121460, Article 121460
issn 0016-2361
1873-7153
language eng
recordid cdi_proquest_journals_2580075303
source Elsevier ScienceDirect Journals
subjects Aromatic hydrocarbons
Asphaltenes
Crude oil
Distribution behavior
Free energy
Gibbs free energy
Heavy oil
Hydrogen bonding
Hydrogen bonds
Intermolecular interaction
Ionic surface active agents
Mathematical analysis
Molecular dynamics
Molecular dynamics simulation
Oil
Pollutants
Resins
Simulation
Sodium dodecyl sulfate
Sodium lauryl sulfate
Surfactant
Surfactants
Water chemistry
Water distribution
title Novel molecular insight into the discrepant distributions for ionic surfactants in light oil/water and heavy oil/water systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A05%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20molecular%20insight%20into%20the%20discrepant%20distributions%20for%20ionic%20surfactants%20in%20light%20oil/water%20and%20heavy%20oil/water%20systems&rft.jtitle=Fuel%20(Guildford)&rft.au=Jia,%20Han&rft.date=2021-11-15&rft.volume=304&rft.spage=121460&rft.pages=121460-&rft.artnum=121460&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2021.121460&rft_dat=%3Cproquest_cross%3E2580075303%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580075303&rft_id=info:pmid/&rft_els_id=S0016236121013399&rfr_iscdi=true