Augmented Lagrangian methods for degenerate Hamilton–Jacobi equations

We suggest a new approach to solve a class of degenerate Hamilton–Jacobi equations without any assumptions on the emptiness of the Aubry set. It is based on the characterization of the maximal subsolution by means of the Fenchel–Rockafellar duality. This approach enables us to use augmented Lagrangi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2021-12, Vol.60 (6), Article 238
Hauptverfasser: Ennaji, Hamza, Igbida, Noureddine, Nguyen, Van Thanh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Calculus of variations and partial differential equations
container_volume 60
creator Ennaji, Hamza
Igbida, Noureddine
Nguyen, Van Thanh
description We suggest a new approach to solve a class of degenerate Hamilton–Jacobi equations without any assumptions on the emptiness of the Aubry set. It is based on the characterization of the maximal subsolution by means of the Fenchel–Rockafellar duality. This approach enables us to use augmented Lagrangian methods as alternatives to the commonly used methods for numerical approximation of the solution, based on finite difference approximation or on optimal control interpretation of the solution.
doi_str_mv 10.1007/s00526-021-02092-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2580053858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580053858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-42442efe66b9ce07126fefd9cbe40373ced38307a39c346ab02fa4dfa9359db13</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqXwAkyRmAPXv4nHqgIKqsQCs-Uk1yFVY7d2OrDxDrwhT0IgSGwMV2c537nSR8glhWsKUNwkAMlUDoyOB5rl8ojMqOAsh5LLYzIDLUTOlNKn5CylDQCVJRMzcr84tD36AZtsbdtofdtZn_U4vIYmZS7ErMEWPUY7YLayfbcdgv98_3i0dai6DPcHO3TBp3Ny4uw24cVvzsnL3e3zcpWvn-4flot1XnPFh1wwIRg6VKrSNUJBmXLoGl1XKIAXvMaGlxwKy3XNhbIVMGdF46zmUjcV5XNyNe3uYtgfMA1mEw7Rjy8Nk-VogZeyHFtsatUxpBTRmV3sehvfDAXzLcxMwswozPwIM3KE-ASlsexbjH_T_1Bf_qRvRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580053858</pqid></control><display><type>article</type><title>Augmented Lagrangian methods for degenerate Hamilton–Jacobi equations</title><source>Springer Nature - Complete Springer Journals</source><creator>Ennaji, Hamza ; Igbida, Noureddine ; Nguyen, Van Thanh</creator><creatorcontrib>Ennaji, Hamza ; Igbida, Noureddine ; Nguyen, Van Thanh</creatorcontrib><description>We suggest a new approach to solve a class of degenerate Hamilton–Jacobi equations without any assumptions on the emptiness of the Aubry set. It is based on the characterization of the maximal subsolution by means of the Fenchel–Rockafellar duality. This approach enables us to use augmented Lagrangian methods as alternatives to the commonly used methods for numerical approximation of the solution, based on finite difference approximation or on optimal control interpretation of the solution.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-021-02092-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Approximation ; Calculus of Variations and Optimal Control; Optimization ; Control ; Finite difference method ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Numerical methods ; Optimal control ; Systems Theory ; Theoretical</subject><ispartof>Calculus of variations and partial differential equations, 2021-12, Vol.60 (6), Article 238</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-42442efe66b9ce07126fefd9cbe40373ced38307a39c346ab02fa4dfa9359db13</citedby><cites>FETCH-LOGICAL-c363t-42442efe66b9ce07126fefd9cbe40373ced38307a39c346ab02fa4dfa9359db13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00526-021-02092-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00526-021-02092-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ennaji, Hamza</creatorcontrib><creatorcontrib>Igbida, Noureddine</creatorcontrib><creatorcontrib>Nguyen, Van Thanh</creatorcontrib><title>Augmented Lagrangian methods for degenerate Hamilton–Jacobi equations</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>We suggest a new approach to solve a class of degenerate Hamilton–Jacobi equations without any assumptions on the emptiness of the Aubry set. It is based on the characterization of the maximal subsolution by means of the Fenchel–Rockafellar duality. This approach enables us to use augmented Lagrangian methods as alternatives to the commonly used methods for numerical approximation of the solution, based on finite difference approximation or on optimal control interpretation of the solution.</description><subject>Analysis</subject><subject>Approximation</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Finite difference method</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical methods</subject><subject>Optimal control</subject><subject>Systems Theory</subject><subject>Theoretical</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhS0EEqXwAkyRmAPXv4nHqgIKqsQCs-Uk1yFVY7d2OrDxDrwhT0IgSGwMV2c537nSR8glhWsKUNwkAMlUDoyOB5rl8ojMqOAsh5LLYzIDLUTOlNKn5CylDQCVJRMzcr84tD36AZtsbdtofdtZn_U4vIYmZS7ErMEWPUY7YLayfbcdgv98_3i0dai6DPcHO3TBp3Ny4uw24cVvzsnL3e3zcpWvn-4flot1XnPFh1wwIRg6VKrSNUJBmXLoGl1XKIAXvMaGlxwKy3XNhbIVMGdF46zmUjcV5XNyNe3uYtgfMA1mEw7Rjy8Nk-VogZeyHFtsatUxpBTRmV3sehvfDAXzLcxMwswozPwIM3KE-ASlsexbjH_T_1Bf_qRvRg</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Ennaji, Hamza</creator><creator>Igbida, Noureddine</creator><creator>Nguyen, Van Thanh</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20211201</creationdate><title>Augmented Lagrangian methods for degenerate Hamilton–Jacobi equations</title><author>Ennaji, Hamza ; Igbida, Noureddine ; Nguyen, Van Thanh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-42442efe66b9ce07126fefd9cbe40373ced38307a39c346ab02fa4dfa9359db13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Approximation</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Finite difference method</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical methods</topic><topic>Optimal control</topic><topic>Systems Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ennaji, Hamza</creatorcontrib><creatorcontrib>Igbida, Noureddine</creatorcontrib><creatorcontrib>Nguyen, Van Thanh</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ennaji, Hamza</au><au>Igbida, Noureddine</au><au>Nguyen, Van Thanh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Augmented Lagrangian methods for degenerate Hamilton–Jacobi equations</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>60</volume><issue>6</issue><artnum>238</artnum><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>We suggest a new approach to solve a class of degenerate Hamilton–Jacobi equations without any assumptions on the emptiness of the Aubry set. It is based on the characterization of the maximal subsolution by means of the Fenchel–Rockafellar duality. This approach enables us to use augmented Lagrangian methods as alternatives to the commonly used methods for numerical approximation of the solution, based on finite difference approximation or on optimal control interpretation of the solution.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00526-021-02092-5</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0944-2669
ispartof Calculus of variations and partial differential equations, 2021-12, Vol.60 (6), Article 238
issn 0944-2669
1432-0835
language eng
recordid cdi_proquest_journals_2580053858
source Springer Nature - Complete Springer Journals
subjects Analysis
Approximation
Calculus of Variations and Optimal Control
Optimization
Control
Finite difference method
Mathematical analysis
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Numerical methods
Optimal control
Systems Theory
Theoretical
title Augmented Lagrangian methods for degenerate Hamilton–Jacobi equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A19%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Augmented%20Lagrangian%20methods%20for%20degenerate%20Hamilton%E2%80%93Jacobi%20equations&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Ennaji,%20Hamza&rft.date=2021-12-01&rft.volume=60&rft.issue=6&rft.artnum=238&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-021-02092-5&rft_dat=%3Cproquest_cross%3E2580053858%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580053858&rft_id=info:pmid/&rfr_iscdi=true