Community structure in a large-scale transaction network and visualization
We analyze a transaction network of about 800 thousand Japanese firms to elucidate its community structure. Finding community in networks means the appearance of dense connected groups of vertices and sparse connections between groups. We adopt modularity as a quality function of communities introdu...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2010-04, Vol.221 (1), p.012012 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 012012 |
container_title | Journal of physics. Conference series |
container_volume | 221 |
creator | Iino, T Kamehama, K Iyetomi, H Ikeda, Y Ohnishi, T Takayasu, H Takayasu, M |
description | We analyze a transaction network of about 800 thousand Japanese firms to elucidate its community structure. Finding community in networks means the appearance of dense connected groups of vertices and sparse connections between groups. We adopt modularity as a quality function of communities introduced by Newman. The modularity optimization is one of effective approaches to find community. We first use a bottom-up algorithm, which makes the optimization fast by using a greedy algorithm. For the community extraction, the greedy algorithm is widely used, however, may not sufficiently optimize modularity because the optimization tends to be trapped by a local maximum especially for large-scale networks. Alternatively we propose a top-down algorithm with implementation of an annealing method and compare effectiveness of the two algorithms. We also compare the results of the community analysis with images of network structure visualized by molecular dynamics method. The vertices belonging to the same community are spatially located close to each other. The community structure determined by the modularity optimization is well reproduced in the network structure obtained by molecular dynamics. |
doi_str_mv | 10.1088/1742-6596/221/1/012012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2579993702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2579993702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3922-f2f99bfbe7c9c107735b0b3919d6a3bd3cf7e96e093718072cb368e79d44bd013</originalsourceid><addsrcrecordid>eNqNkE9LwzAYh4MoOKdfQQKea_Nna5qjDHXKwIueQ5Imktk1NUmV-elNqYiHHQyBBH6_533hAeASo2uM6rrEbEGKasmrkhBc4hJhku8RmP0Gx3_-p-Asxi1CNB82A48rv9sNnUt7GFMYdBqCga6DErYyvJoiatkamILsotTJ-Q52Jn368AZl18APFwfZui85JufgxMo2moufdw5e7m6fV-ti83T_sLrZFJpyQgpLLOfKKsM01xgxRpcKKcoxbypJVUO1ZYZXBnHKcI0Y0YpWtWG8WSxUgzCdg6tpbh_8-2BiEls_hC6vFGTJOM8cIrlVTS0dfIzBWNEHt5NhLzASozcxKhGjEpG9CSwmbxnEE-h8_3-mOMAc7Iq-sfQbjAd8sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579993702</pqid></control><display><type>article</type><title>Community structure in a large-scale transaction network and visualization</title><source>IOP Publishing</source><creator>Iino, T ; Kamehama, K ; Iyetomi, H ; Ikeda, Y ; Ohnishi, T ; Takayasu, H ; Takayasu, M</creator><creatorcontrib>Iino, T ; Kamehama, K ; Iyetomi, H ; Ikeda, Y ; Ohnishi, T ; Takayasu, H ; Takayasu, M</creatorcontrib><description>We analyze a transaction network of about 800 thousand Japanese firms to elucidate its community structure. Finding community in networks means the appearance of dense connected groups of vertices and sparse connections between groups. We adopt modularity as a quality function of communities introduced by Newman. The modularity optimization is one of effective approaches to find community. We first use a bottom-up algorithm, which makes the optimization fast by using a greedy algorithm. For the community extraction, the greedy algorithm is widely used, however, may not sufficiently optimize modularity because the optimization tends to be trapped by a local maximum especially for large-scale networks. Alternatively we propose a top-down algorithm with implementation of an annealing method and compare effectiveness of the two algorithms. We also compare the results of the community analysis with images of network structure visualized by molecular dynamics method. The vertices belonging to the same community are spatially located close to each other. The community structure determined by the modularity optimization is well reproduced in the network structure obtained by molecular dynamics.</description><identifier>ISSN: 1742-6596</identifier><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/221/1/012012</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Apexes ; Dynamic structural analysis ; Greedy algorithms ; Modularity ; Molecular dynamics ; Molecular structure ; Optimization ; Physics</subject><ispartof>Journal of physics. Conference series, 2010-04, Vol.221 (1), p.012012</ispartof><rights>Copyright IOP Publishing Apr 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3922-f2f99bfbe7c9c107735b0b3919d6a3bd3cf7e96e093718072cb368e79d44bd013</citedby><cites>FETCH-LOGICAL-c3922-f2f99bfbe7c9c107735b0b3919d6a3bd3cf7e96e093718072cb368e79d44bd013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/221/1/012012/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,1553,27628,27924,27925,53904,53931</link.rule.ids><linktorsrc>$$Uhttp://iopscience.iop.org/1742-6596/221/1/012012$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Iino, T</creatorcontrib><creatorcontrib>Kamehama, K</creatorcontrib><creatorcontrib>Iyetomi, H</creatorcontrib><creatorcontrib>Ikeda, Y</creatorcontrib><creatorcontrib>Ohnishi, T</creatorcontrib><creatorcontrib>Takayasu, H</creatorcontrib><creatorcontrib>Takayasu, M</creatorcontrib><title>Community structure in a large-scale transaction network and visualization</title><title>Journal of physics. Conference series</title><description>We analyze a transaction network of about 800 thousand Japanese firms to elucidate its community structure. Finding community in networks means the appearance of dense connected groups of vertices and sparse connections between groups. We adopt modularity as a quality function of communities introduced by Newman. The modularity optimization is one of effective approaches to find community. We first use a bottom-up algorithm, which makes the optimization fast by using a greedy algorithm. For the community extraction, the greedy algorithm is widely used, however, may not sufficiently optimize modularity because the optimization tends to be trapped by a local maximum especially for large-scale networks. Alternatively we propose a top-down algorithm with implementation of an annealing method and compare effectiveness of the two algorithms. We also compare the results of the community analysis with images of network structure visualized by molecular dynamics method. The vertices belonging to the same community are spatially located close to each other. The community structure determined by the modularity optimization is well reproduced in the network structure obtained by molecular dynamics.</description><subject>Algorithms</subject><subject>Apexes</subject><subject>Dynamic structural analysis</subject><subject>Greedy algorithms</subject><subject>Modularity</subject><subject>Molecular dynamics</subject><subject>Molecular structure</subject><subject>Optimization</subject><subject>Physics</subject><issn>1742-6596</issn><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkE9LwzAYh4MoOKdfQQKea_Nna5qjDHXKwIueQ5Imktk1NUmV-elNqYiHHQyBBH6_533hAeASo2uM6rrEbEGKasmrkhBc4hJhku8RmP0Gx3_-p-Asxi1CNB82A48rv9sNnUt7GFMYdBqCga6DErYyvJoiatkamILsotTJ-Q52Jn368AZl18APFwfZui85JufgxMo2moufdw5e7m6fV-ti83T_sLrZFJpyQgpLLOfKKsM01xgxRpcKKcoxbypJVUO1ZYZXBnHKcI0Y0YpWtWG8WSxUgzCdg6tpbh_8-2BiEls_hC6vFGTJOM8cIrlVTS0dfIzBWNEHt5NhLzASozcxKhGjEpG9CSwmbxnEE-h8_3-mOMAc7Iq-sfQbjAd8sg</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Iino, T</creator><creator>Kamehama, K</creator><creator>Iyetomi, H</creator><creator>Ikeda, Y</creator><creator>Ohnishi, T</creator><creator>Takayasu, H</creator><creator>Takayasu, M</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20100401</creationdate><title>Community structure in a large-scale transaction network and visualization</title><author>Iino, T ; Kamehama, K ; Iyetomi, H ; Ikeda, Y ; Ohnishi, T ; Takayasu, H ; Takayasu, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3922-f2f99bfbe7c9c107735b0b3919d6a3bd3cf7e96e093718072cb368e79d44bd013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Apexes</topic><topic>Dynamic structural analysis</topic><topic>Greedy algorithms</topic><topic>Modularity</topic><topic>Molecular dynamics</topic><topic>Molecular structure</topic><topic>Optimization</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iino, T</creatorcontrib><creatorcontrib>Kamehama, K</creatorcontrib><creatorcontrib>Iyetomi, H</creatorcontrib><creatorcontrib>Ikeda, Y</creatorcontrib><creatorcontrib>Ohnishi, T</creatorcontrib><creatorcontrib>Takayasu, H</creatorcontrib><creatorcontrib>Takayasu, M</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Iino, T</au><au>Kamehama, K</au><au>Iyetomi, H</au><au>Ikeda, Y</au><au>Ohnishi, T</au><au>Takayasu, H</au><au>Takayasu, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Community structure in a large-scale transaction network and visualization</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2010-04-01</date><risdate>2010</risdate><volume>221</volume><issue>1</issue><spage>012012</spage><pages>012012-</pages><issn>1742-6596</issn><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>We analyze a transaction network of about 800 thousand Japanese firms to elucidate its community structure. Finding community in networks means the appearance of dense connected groups of vertices and sparse connections between groups. We adopt modularity as a quality function of communities introduced by Newman. The modularity optimization is one of effective approaches to find community. We first use a bottom-up algorithm, which makes the optimization fast by using a greedy algorithm. For the community extraction, the greedy algorithm is widely used, however, may not sufficiently optimize modularity because the optimization tends to be trapped by a local maximum especially for large-scale networks. Alternatively we propose a top-down algorithm with implementation of an annealing method and compare effectiveness of the two algorithms. We also compare the results of the community analysis with images of network structure visualized by molecular dynamics method. The vertices belonging to the same community are spatially located close to each other. The community structure determined by the modularity optimization is well reproduced in the network structure obtained by molecular dynamics.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/221/1/012012</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1742-6596 |
ispartof | Journal of physics. Conference series, 2010-04, Vol.221 (1), p.012012 |
issn | 1742-6596 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2579993702 |
source | IOP Publishing |
subjects | Algorithms Apexes Dynamic structural analysis Greedy algorithms Modularity Molecular dynamics Molecular structure Optimization Physics |
title | Community structure in a large-scale transaction network and visualization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A48%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Community%20structure%20in%20a%20large-scale%20transaction%20network%20and%20visualization&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Iino,%20T&rft.date=2010-04-01&rft.volume=221&rft.issue=1&rft.spage=012012&rft.pages=012012-&rft.issn=1742-6596&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/221/1/012012&rft_dat=%3Cproquest_O3W%3E2579993702%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579993702&rft_id=info:pmid/&rfr_iscdi=true |