FLEXIBLE SOIL MICROBIAL CARBON METABOLISM ACROSS AN ASIAN ELEVATION GRADIENT
The function and change of global soil carbon (C) reserves in natural ecosystems are key regulators of future carbon-climate coupling. Microbes play a critical role in soil carbon cycling and yet there is poor understanding of their roles and C metabolism flexibility in many ecosystems. We wanted to...
Gespeichert in:
Veröffentlicht in: | Radiocarbon 2021-10, Vol.63 (5), p.1397-1413 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1413 |
---|---|
container_issue | 5 |
container_start_page | 1397 |
container_title | Radiocarbon |
container_volume | 63 |
creator | Jiang, Yishan Zhang, Dayi Ostle, Nicholas J Luo, Chunling Wang, Yan Ding, Ping Cheng, Zhineng Shen, Chengde Zhang, Gan |
description | The function and change of global soil carbon (C) reserves in natural ecosystems are key regulators of future carbon-climate coupling. Microbes play a critical role in soil carbon cycling and yet there is poor understanding of their roles and C metabolism flexibility in many ecosystems. We wanted to determine whether vegetation type and climate zone influence soil microbial community composition (fungi and bacteria) and carbon resource preference. We used a biomarker (phospholipid fatty acids, PLFAs), natural abundance 13C and 14C probing approach to measure soil microbial composition and C resource use, along a 1900–4167-m elevation gradient on Mount Gongga (7556 m asl), China. Mount Gongga has a vertical mean annual temperature gradient of 1.2–10.1°C and a diversity of typical vegetation zones in the Tibetan Plateau. Soils were sampled at 10 locations along the gradient capturing distinct vegetation types and climate zones from lowland subtropical-forest to alpine-meadow. PLFA results showed that microbial communities were composed of 2.1–51.7% bacteria and 2.0–23.2% fungi across the elevation gradient. Microbial biomass was higher and the ratio of soil fungi to bacteria (F/B) was lower in forest soils compared to meadow soils. δ13C varied between −33‰ to −17‰ with C3 plant carbon sources dominant across the gradient. Soil organic carbon (SOC) turnover did not vary among three soils we measured from three forest types (i.e., evergreen broadleaved subtropical, mixed temperate, coniferous alpine) and dissolved organic carbon (DOC) turnover decreased with soil elevation. Forest soil microbial PLFA 14C and δ13C measurements showed that forest type and climate were related to different microbial C use. The 14C values of microbial PLFAs i15, a15, 16:1, br17 decreased with elevation while those of C16:0, cyC17, and cyC19 did not show much difference among three forest ecosystems. Bacteria and bacillus represented by C16:1 and brC17 showed considerable microbial C metabolism flexibility and tended to use ancient carbon at higher altitudes. Anaerobes represented by cyC17 and cyC19 showed stronger C metabolism selectivity. Our findings reveal specific C source differences between and within soil microbial groups along elevation gradients. |
doi_str_mv | 10.1017/RDC.2021.57 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2579993124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_RDC_2021_57</cupid><sourcerecordid>2579993124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-42a1345eeff14b0f93638ac20db8b55e1b030ddd5e778710ab16a2b80c1ed5233</originalsourceid><addsrcrecordid>eNpt0E9LwzAYBvAgCs7pyS8Q8Cid-dMs7THtshnIVmireAtNm8qGczPdDn57Mxx48fK-h_fH88IDwD1GE4wwfypn-YQggieMX4ARTmMWMc7YJRghRGmUEEKuwc0wbFBA04SPgJ5r-aYyLWFVKA2XKi-LTAkNc1FmxQouZS2yQqtqCUU4VRUUKygqFabU8lXUKqBFKWZKrupbcNU3H4O7O-8xeJnLOn-OdLFQudBRSxg_RDFpMI2Zc32PY4v6lE5p0rQEdTaxjDlsEUVd1zHHecIxaiyeNsQmqMWuY4TSMXj4zd373dfRDQez2R39Z3hpwoM0TSkmcVCPv6r1u2Hwrjd7v942_ttgZE51mVCXOdVlGA86Outma_26e3d_of_5H-5IYy0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579993124</pqid></control><display><type>article</type><title>FLEXIBLE SOIL MICROBIAL CARBON METABOLISM ACROSS AN ASIAN ELEVATION GRADIENT</title><source>Cambridge Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Jiang, Yishan ; Zhang, Dayi ; Ostle, Nicholas J ; Luo, Chunling ; Wang, Yan ; Ding, Ping ; Cheng, Zhineng ; Shen, Chengde ; Zhang, Gan</creator><creatorcontrib>Jiang, Yishan ; Zhang, Dayi ; Ostle, Nicholas J ; Luo, Chunling ; Wang, Yan ; Ding, Ping ; Cheng, Zhineng ; Shen, Chengde ; Zhang, Gan</creatorcontrib><description>The function and change of global soil carbon (C) reserves in natural ecosystems are key regulators of future carbon-climate coupling. Microbes play a critical role in soil carbon cycling and yet there is poor understanding of their roles and C metabolism flexibility in many ecosystems. We wanted to determine whether vegetation type and climate zone influence soil microbial community composition (fungi and bacteria) and carbon resource preference. We used a biomarker (phospholipid fatty acids, PLFAs), natural abundance 13C and 14C probing approach to measure soil microbial composition and C resource use, along a 1900–4167-m elevation gradient on Mount Gongga (7556 m asl), China. Mount Gongga has a vertical mean annual temperature gradient of 1.2–10.1°C and a diversity of typical vegetation zones in the Tibetan Plateau. Soils were sampled at 10 locations along the gradient capturing distinct vegetation types and climate zones from lowland subtropical-forest to alpine-meadow. PLFA results showed that microbial communities were composed of 2.1–51.7% bacteria and 2.0–23.2% fungi across the elevation gradient. Microbial biomass was higher and the ratio of soil fungi to bacteria (F/B) was lower in forest soils compared to meadow soils. δ13C varied between −33‰ to −17‰ with C3 plant carbon sources dominant across the gradient. Soil organic carbon (SOC) turnover did not vary among three soils we measured from three forest types (i.e., evergreen broadleaved subtropical, mixed temperate, coniferous alpine) and dissolved organic carbon (DOC) turnover decreased with soil elevation. Forest soil microbial PLFA 14C and δ13C measurements showed that forest type and climate were related to different microbial C use. The 14C values of microbial PLFAs i15, a15, 16:1, br17 decreased with elevation while those of C16:0, cyC17, and cyC19 did not show much difference among three forest ecosystems. Bacteria and bacillus represented by C16:1 and brC17 showed considerable microbial C metabolism flexibility and tended to use ancient carbon at higher altitudes. Anaerobes represented by cyC17 and cyC19 showed stronger C metabolism selectivity. Our findings reveal specific C source differences between and within soil microbial groups along elevation gradients.</description><identifier>ISSN: 0033-8222</identifier><identifier>EISSN: 1945-5755</identifier><identifier>DOI: 10.1017/RDC.2021.57</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Anaerobes ; Bacteria ; Biomarkers ; Carbon ; Carbon 14 ; Carbon cycle ; Climate ; Climate change ; Composition ; Dissolved organic carbon ; Ecosystems ; Fatty acids ; Flexibility ; Forests ; Fungi ; Gram-positive bacteria ; Metabolism ; Microorganisms ; Phospholipids ; Precipitation ; Selectivity ; Soil bacteria ; Soil microorganisms ; Soils ; Vegetation</subject><ispartof>Radiocarbon, 2021-10, Vol.63 (5), p.1397-1413</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c257t-42a1345eeff14b0f93638ac20db8b55e1b030ddd5e778710ab16a2b80c1ed5233</cites><orcidid>0000-0003-2359-4246 ; 0000-0002-6598-849X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0033822221000576/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,777,781,27905,27906,55609</link.rule.ids></links><search><creatorcontrib>Jiang, Yishan</creatorcontrib><creatorcontrib>Zhang, Dayi</creatorcontrib><creatorcontrib>Ostle, Nicholas J</creatorcontrib><creatorcontrib>Luo, Chunling</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Ding, Ping</creatorcontrib><creatorcontrib>Cheng, Zhineng</creatorcontrib><creatorcontrib>Shen, Chengde</creatorcontrib><creatorcontrib>Zhang, Gan</creatorcontrib><title>FLEXIBLE SOIL MICROBIAL CARBON METABOLISM ACROSS AN ASIAN ELEVATION GRADIENT</title><title>Radiocarbon</title><addtitle>Radiocarbon</addtitle><description>The function and change of global soil carbon (C) reserves in natural ecosystems are key regulators of future carbon-climate coupling. Microbes play a critical role in soil carbon cycling and yet there is poor understanding of their roles and C metabolism flexibility in many ecosystems. We wanted to determine whether vegetation type and climate zone influence soil microbial community composition (fungi and bacteria) and carbon resource preference. We used a biomarker (phospholipid fatty acids, PLFAs), natural abundance 13C and 14C probing approach to measure soil microbial composition and C resource use, along a 1900–4167-m elevation gradient on Mount Gongga (7556 m asl), China. Mount Gongga has a vertical mean annual temperature gradient of 1.2–10.1°C and a diversity of typical vegetation zones in the Tibetan Plateau. Soils were sampled at 10 locations along the gradient capturing distinct vegetation types and climate zones from lowland subtropical-forest to alpine-meadow. PLFA results showed that microbial communities were composed of 2.1–51.7% bacteria and 2.0–23.2% fungi across the elevation gradient. Microbial biomass was higher and the ratio of soil fungi to bacteria (F/B) was lower in forest soils compared to meadow soils. δ13C varied between −33‰ to −17‰ with C3 plant carbon sources dominant across the gradient. Soil organic carbon (SOC) turnover did not vary among three soils we measured from three forest types (i.e., evergreen broadleaved subtropical, mixed temperate, coniferous alpine) and dissolved organic carbon (DOC) turnover decreased with soil elevation. Forest soil microbial PLFA 14C and δ13C measurements showed that forest type and climate were related to different microbial C use. The 14C values of microbial PLFAs i15, a15, 16:1, br17 decreased with elevation while those of C16:0, cyC17, and cyC19 did not show much difference among three forest ecosystems. Bacteria and bacillus represented by C16:1 and brC17 showed considerable microbial C metabolism flexibility and tended to use ancient carbon at higher altitudes. Anaerobes represented by cyC17 and cyC19 showed stronger C metabolism selectivity. Our findings reveal specific C source differences between and within soil microbial groups along elevation gradients.</description><subject>Anaerobes</subject><subject>Bacteria</subject><subject>Biomarkers</subject><subject>Carbon</subject><subject>Carbon 14</subject><subject>Carbon cycle</subject><subject>Climate</subject><subject>Climate change</subject><subject>Composition</subject><subject>Dissolved organic carbon</subject><subject>Ecosystems</subject><subject>Fatty acids</subject><subject>Flexibility</subject><subject>Forests</subject><subject>Fungi</subject><subject>Gram-positive bacteria</subject><subject>Metabolism</subject><subject>Microorganisms</subject><subject>Phospholipids</subject><subject>Precipitation</subject><subject>Selectivity</subject><subject>Soil bacteria</subject><subject>Soil microorganisms</subject><subject>Soils</subject><subject>Vegetation</subject><issn>0033-8222</issn><issn>1945-5755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpt0E9LwzAYBvAgCs7pyS8Q8Cid-dMs7THtshnIVmireAtNm8qGczPdDn57Mxx48fK-h_fH88IDwD1GE4wwfypn-YQggieMX4ARTmMWMc7YJRghRGmUEEKuwc0wbFBA04SPgJ5r-aYyLWFVKA2XKi-LTAkNc1FmxQouZS2yQqtqCUU4VRUUKygqFabU8lXUKqBFKWZKrupbcNU3H4O7O-8xeJnLOn-OdLFQudBRSxg_RDFpMI2Zc32PY4v6lE5p0rQEdTaxjDlsEUVd1zHHecIxaiyeNsQmqMWuY4TSMXj4zd373dfRDQez2R39Z3hpwoM0TSkmcVCPv6r1u2Hwrjd7v942_ttgZE51mVCXOdVlGA86Outma_26e3d_of_5H-5IYy0</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Jiang, Yishan</creator><creator>Zhang, Dayi</creator><creator>Ostle, Nicholas J</creator><creator>Luo, Chunling</creator><creator>Wang, Yan</creator><creator>Ding, Ping</creator><creator>Cheng, Zhineng</creator><creator>Shen, Chengde</creator><creator>Zhang, Gan</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-2359-4246</orcidid><orcidid>https://orcid.org/0000-0002-6598-849X</orcidid></search><sort><creationdate>20211001</creationdate><title>FLEXIBLE SOIL MICROBIAL CARBON METABOLISM ACROSS AN ASIAN ELEVATION GRADIENT</title><author>Jiang, Yishan ; Zhang, Dayi ; Ostle, Nicholas J ; Luo, Chunling ; Wang, Yan ; Ding, Ping ; Cheng, Zhineng ; Shen, Chengde ; Zhang, Gan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-42a1345eeff14b0f93638ac20db8b55e1b030ddd5e778710ab16a2b80c1ed5233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anaerobes</topic><topic>Bacteria</topic><topic>Biomarkers</topic><topic>Carbon</topic><topic>Carbon 14</topic><topic>Carbon cycle</topic><topic>Climate</topic><topic>Climate change</topic><topic>Composition</topic><topic>Dissolved organic carbon</topic><topic>Ecosystems</topic><topic>Fatty acids</topic><topic>Flexibility</topic><topic>Forests</topic><topic>Fungi</topic><topic>Gram-positive bacteria</topic><topic>Metabolism</topic><topic>Microorganisms</topic><topic>Phospholipids</topic><topic>Precipitation</topic><topic>Selectivity</topic><topic>Soil bacteria</topic><topic>Soil microorganisms</topic><topic>Soils</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Yishan</creatorcontrib><creatorcontrib>Zhang, Dayi</creatorcontrib><creatorcontrib>Ostle, Nicholas J</creatorcontrib><creatorcontrib>Luo, Chunling</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Ding, Ping</creatorcontrib><creatorcontrib>Cheng, Zhineng</creatorcontrib><creatorcontrib>Shen, Chengde</creatorcontrib><creatorcontrib>Zhang, Gan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Radiocarbon</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Yishan</au><au>Zhang, Dayi</au><au>Ostle, Nicholas J</au><au>Luo, Chunling</au><au>Wang, Yan</au><au>Ding, Ping</au><au>Cheng, Zhineng</au><au>Shen, Chengde</au><au>Zhang, Gan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FLEXIBLE SOIL MICROBIAL CARBON METABOLISM ACROSS AN ASIAN ELEVATION GRADIENT</atitle><jtitle>Radiocarbon</jtitle><addtitle>Radiocarbon</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>63</volume><issue>5</issue><spage>1397</spage><epage>1413</epage><pages>1397-1413</pages><issn>0033-8222</issn><eissn>1945-5755</eissn><abstract>The function and change of global soil carbon (C) reserves in natural ecosystems are key regulators of future carbon-climate coupling. Microbes play a critical role in soil carbon cycling and yet there is poor understanding of their roles and C metabolism flexibility in many ecosystems. We wanted to determine whether vegetation type and climate zone influence soil microbial community composition (fungi and bacteria) and carbon resource preference. We used a biomarker (phospholipid fatty acids, PLFAs), natural abundance 13C and 14C probing approach to measure soil microbial composition and C resource use, along a 1900–4167-m elevation gradient on Mount Gongga (7556 m asl), China. Mount Gongga has a vertical mean annual temperature gradient of 1.2–10.1°C and a diversity of typical vegetation zones in the Tibetan Plateau. Soils were sampled at 10 locations along the gradient capturing distinct vegetation types and climate zones from lowland subtropical-forest to alpine-meadow. PLFA results showed that microbial communities were composed of 2.1–51.7% bacteria and 2.0–23.2% fungi across the elevation gradient. Microbial biomass was higher and the ratio of soil fungi to bacteria (F/B) was lower in forest soils compared to meadow soils. δ13C varied between −33‰ to −17‰ with C3 plant carbon sources dominant across the gradient. Soil organic carbon (SOC) turnover did not vary among three soils we measured from three forest types (i.e., evergreen broadleaved subtropical, mixed temperate, coniferous alpine) and dissolved organic carbon (DOC) turnover decreased with soil elevation. Forest soil microbial PLFA 14C and δ13C measurements showed that forest type and climate were related to different microbial C use. The 14C values of microbial PLFAs i15, a15, 16:1, br17 decreased with elevation while those of C16:0, cyC17, and cyC19 did not show much difference among three forest ecosystems. Bacteria and bacillus represented by C16:1 and brC17 showed considerable microbial C metabolism flexibility and tended to use ancient carbon at higher altitudes. Anaerobes represented by cyC17 and cyC19 showed stronger C metabolism selectivity. Our findings reveal specific C source differences between and within soil microbial groups along elevation gradients.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/RDC.2021.57</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-2359-4246</orcidid><orcidid>https://orcid.org/0000-0002-6598-849X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-8222 |
ispartof | Radiocarbon, 2021-10, Vol.63 (5), p.1397-1413 |
issn | 0033-8222 1945-5755 |
language | eng |
recordid | cdi_proquest_journals_2579993124 |
source | Cambridge Journals; Free Full-Text Journals in Chemistry |
subjects | Anaerobes Bacteria Biomarkers Carbon Carbon 14 Carbon cycle Climate Climate change Composition Dissolved organic carbon Ecosystems Fatty acids Flexibility Forests Fungi Gram-positive bacteria Metabolism Microorganisms Phospholipids Precipitation Selectivity Soil bacteria Soil microorganisms Soils Vegetation |
title | FLEXIBLE SOIL MICROBIAL CARBON METABOLISM ACROSS AN ASIAN ELEVATION GRADIENT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T04%3A03%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FLEXIBLE%20SOIL%20MICROBIAL%20CARBON%20METABOLISM%20ACROSS%20AN%20ASIAN%20ELEVATION%20GRADIENT&rft.jtitle=Radiocarbon&rft.au=Jiang,%20Yishan&rft.date=2021-10-01&rft.volume=63&rft.issue=5&rft.spage=1397&rft.epage=1413&rft.pages=1397-1413&rft.issn=0033-8222&rft.eissn=1945-5755&rft_id=info:doi/10.1017/RDC.2021.57&rft_dat=%3Cproquest_cross%3E2579993124%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579993124&rft_id=info:pmid/&rft_cupid=10_1017_RDC_2021_57&rfr_iscdi=true |