Facile Amidogen Bio‐Activation Method Can Boost the Soft Tissue Integration on 3D Printed Poly–Ether–Ether–Ketone Interface
Poly‐ether‐ether‐ketone (PEEK) implants with good mechanical properties and chemical inertia, meet the urgent needs of bone substitute. However, its inert interface leads to poor soft tissue integration, which prolongs healing time of surgical incision with many complications. Herein, (3‐aminopropyl...
Gespeichert in:
Veröffentlicht in: | Advanced materials interfaces 2021-10, Vol.8 (19), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 19 |
container_start_page | |
container_title | Advanced materials interfaces |
container_volume | 8 |
creator | Liu, Xi Huang, Lijun Zhang, Hao Liu, Yujian Wu, Chunyan Luo, Qixing Yin, Feiyang Yan, Xiaolong Zhao, Jinbo Su, Yanwen He, Jiankang Li, Weimiao Li, Dichen Shi, Changquan Yang, Pinyi Zhao, Zhenhuan Du, Tao Wu, Weiwei Li, Xiaofei Wang, Lei |
description | Poly‐ether‐ether‐ketone (PEEK) implants with good mechanical properties and chemical inertia, meet the urgent needs of bone substitute. However, its inert interface leads to poor soft tissue integration, which prolongs healing time of surgical incision with many complications. Herein, (3‐aminopropyl) triethoxysilane is connected to 3D printed (3DP) PEEK interface by chemical modification. The homogeneous amino groups on amidogen interface enhance PEEK's hydrophilicity and proteinophilia significantly. Fibroblasts cultured on the amidogen PEEK interface show much stronger potential of cell adhesion and migration. Furthermore, soft tissue ingrowth into 3DP PEEK scaffold occurs more and faster in the amidogen interface in vivo. The observation of the microstructure shows tighter implant–tissue bonding interfaces on the amidogen PEEK. To mimic real surgery, 3DP PEEK implants of the same proportions in clinical practice are used to reconstruct the chest wall defects of rabbits. A significant reduction in healing time and incision complications are observed in the amidogen PEEK groups. In addition, 19 related proteins are found in the fibroblasts cultured on the amidogen PEEK interface, which can be used to trace the biological mechanisms. In all, the facile amidogen bio‐activation method can significantly boost the soft tissue integration on 3DP PEEK interface with less surgical complications.
A facile amidogen activation method is developed to solve the interface fusion issue between hard artificial bone and soft tissue. The materials characterizations, cell/tissue experiments, and simulated clinical trial (rabbit) are realized. Interface fusion is improved dramatically and suppressed side effects are achieved, while more options are provided for chest wall reconstruction. |
doi_str_mv | 10.1002/admi.202100547 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2579941234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2579941234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3837-14885765d83a3051b33286bfae4a71328914a0011651a4d143db18ead77107823</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhQdRsNRuXQdct-ZvJpnl2B8ttliwrod0kmlT2klNUqW7gi8g-IZ9ElNGtDshcG5uznfDPVF0jWAHQYhvhVzrDoY4XGLKzqIGRmnSZiSG5yf1ZdRybgkhRAgjzEkj-hiIQq8UyNZamrmqwJ02h_1nVnj9Jrw2FRgrvzASdEV4M8Z54BcKPJvSg6l2bqvAsPJqbmtzOKQHJlaHngQTs9od9l_9QNgTfVTeVDVnS1Goq-iiFCunWj_ajF4G_Wn3oT16uh92s1G7IJywNqKcxyyJJSeCwBjNCME8mZVCUcFQqFNExXG1JEaCSkSJnCGuhGQMQcYxaUY39dyNNa9b5Xy-NFtbhS9zHLM0pQgTGlyd2lVY45xVZb6xei3sLkcwP2adH7POf7MOQFoD7yHI3T_uPOuNh3_sN9i6hSc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579941234</pqid></control><display><type>article</type><title>Facile Amidogen Bio‐Activation Method Can Boost the Soft Tissue Integration on 3D Printed Poly–Ether–Ether–Ketone Interface</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Xi ; Huang, Lijun ; Zhang, Hao ; Liu, Yujian ; Wu, Chunyan ; Luo, Qixing ; Yin, Feiyang ; Yan, Xiaolong ; Zhao, Jinbo ; Su, Yanwen ; He, Jiankang ; Li, Weimiao ; Li, Dichen ; Shi, Changquan ; Yang, Pinyi ; Zhao, Zhenhuan ; Du, Tao ; Wu, Weiwei ; Li, Xiaofei ; Wang, Lei</creator><creatorcontrib>Liu, Xi ; Huang, Lijun ; Zhang, Hao ; Liu, Yujian ; Wu, Chunyan ; Luo, Qixing ; Yin, Feiyang ; Yan, Xiaolong ; Zhao, Jinbo ; Su, Yanwen ; He, Jiankang ; Li, Weimiao ; Li, Dichen ; Shi, Changquan ; Yang, Pinyi ; Zhao, Zhenhuan ; Du, Tao ; Wu, Weiwei ; Li, Xiaofei ; Wang, Lei</creatorcontrib><description>Poly‐ether‐ether‐ketone (PEEK) implants with good mechanical properties and chemical inertia, meet the urgent needs of bone substitute. However, its inert interface leads to poor soft tissue integration, which prolongs healing time of surgical incision with many complications. Herein, (3‐aminopropyl) triethoxysilane is connected to 3D printed (3DP) PEEK interface by chemical modification. The homogeneous amino groups on amidogen interface enhance PEEK's hydrophilicity and proteinophilia significantly. Fibroblasts cultured on the amidogen PEEK interface show much stronger potential of cell adhesion and migration. Furthermore, soft tissue ingrowth into 3DP PEEK scaffold occurs more and faster in the amidogen interface in vivo. The observation of the microstructure shows tighter implant–tissue bonding interfaces on the amidogen PEEK. To mimic real surgery, 3DP PEEK implants of the same proportions in clinical practice are used to reconstruct the chest wall defects of rabbits. A significant reduction in healing time and incision complications are observed in the amidogen PEEK groups. In addition, 19 related proteins are found in the fibroblasts cultured on the amidogen PEEK interface, which can be used to trace the biological mechanisms. In all, the facile amidogen bio‐activation method can significantly boost the soft tissue integration on 3DP PEEK interface with less surgical complications.
A facile amidogen activation method is developed to solve the interface fusion issue between hard artificial bone and soft tissue. The materials characterizations, cell/tissue experiments, and simulated clinical trial (rabbit) are realized. Interface fusion is improved dramatically and suppressed side effects are achieved, while more options are provided for chest wall reconstruction.</description><identifier>ISSN: 2196-7350</identifier><identifier>EISSN: 2196-7350</identifier><identifier>DOI: 10.1002/admi.202100547</identifier><language>eng</language><publisher>Weinheim: John Wiley & Sons, Inc</publisher><subject>3D printing ; artificial bone ; Biomedical materials ; Bonding strength ; Cell adhesion ; Fibroblasts ; Healing ; Interfaces ; Mechanical properties ; Polyether ether ketones ; poly–ether–ether–ketone ; Rabbits ; Soft tissues ; Substitute bone ; surface modification ; Three dimensional printing ; tissue interface fusion ; Transplants & implants</subject><ispartof>Advanced materials interfaces, 2021-10, Vol.8 (19), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3837-14885765d83a3051b33286bfae4a71328914a0011651a4d143db18ead77107823</citedby><cites>FETCH-LOGICAL-c3837-14885765d83a3051b33286bfae4a71328914a0011651a4d143db18ead77107823</cites><orcidid>0000-0001-5354-9548</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadmi.202100547$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadmi.202100547$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Liu, Xi</creatorcontrib><creatorcontrib>Huang, Lijun</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Liu, Yujian</creatorcontrib><creatorcontrib>Wu, Chunyan</creatorcontrib><creatorcontrib>Luo, Qixing</creatorcontrib><creatorcontrib>Yin, Feiyang</creatorcontrib><creatorcontrib>Yan, Xiaolong</creatorcontrib><creatorcontrib>Zhao, Jinbo</creatorcontrib><creatorcontrib>Su, Yanwen</creatorcontrib><creatorcontrib>He, Jiankang</creatorcontrib><creatorcontrib>Li, Weimiao</creatorcontrib><creatorcontrib>Li, Dichen</creatorcontrib><creatorcontrib>Shi, Changquan</creatorcontrib><creatorcontrib>Yang, Pinyi</creatorcontrib><creatorcontrib>Zhao, Zhenhuan</creatorcontrib><creatorcontrib>Du, Tao</creatorcontrib><creatorcontrib>Wu, Weiwei</creatorcontrib><creatorcontrib>Li, Xiaofei</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><title>Facile Amidogen Bio‐Activation Method Can Boost the Soft Tissue Integration on 3D Printed Poly–Ether–Ether–Ketone Interface</title><title>Advanced materials interfaces</title><description>Poly‐ether‐ether‐ketone (PEEK) implants with good mechanical properties and chemical inertia, meet the urgent needs of bone substitute. However, its inert interface leads to poor soft tissue integration, which prolongs healing time of surgical incision with many complications. Herein, (3‐aminopropyl) triethoxysilane is connected to 3D printed (3DP) PEEK interface by chemical modification. The homogeneous amino groups on amidogen interface enhance PEEK's hydrophilicity and proteinophilia significantly. Fibroblasts cultured on the amidogen PEEK interface show much stronger potential of cell adhesion and migration. Furthermore, soft tissue ingrowth into 3DP PEEK scaffold occurs more and faster in the amidogen interface in vivo. The observation of the microstructure shows tighter implant–tissue bonding interfaces on the amidogen PEEK. To mimic real surgery, 3DP PEEK implants of the same proportions in clinical practice are used to reconstruct the chest wall defects of rabbits. A significant reduction in healing time and incision complications are observed in the amidogen PEEK groups. In addition, 19 related proteins are found in the fibroblasts cultured on the amidogen PEEK interface, which can be used to trace the biological mechanisms. In all, the facile amidogen bio‐activation method can significantly boost the soft tissue integration on 3DP PEEK interface with less surgical complications.
A facile amidogen activation method is developed to solve the interface fusion issue between hard artificial bone and soft tissue. The materials characterizations, cell/tissue experiments, and simulated clinical trial (rabbit) are realized. Interface fusion is improved dramatically and suppressed side effects are achieved, while more options are provided for chest wall reconstruction.</description><subject>3D printing</subject><subject>artificial bone</subject><subject>Biomedical materials</subject><subject>Bonding strength</subject><subject>Cell adhesion</subject><subject>Fibroblasts</subject><subject>Healing</subject><subject>Interfaces</subject><subject>Mechanical properties</subject><subject>Polyether ether ketones</subject><subject>poly–ether–ether–ketone</subject><subject>Rabbits</subject><subject>Soft tissues</subject><subject>Substitute bone</subject><subject>surface modification</subject><subject>Three dimensional printing</subject><subject>tissue interface fusion</subject><subject>Transplants & implants</subject><issn>2196-7350</issn><issn>2196-7350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhQdRsNRuXQdct-ZvJpnl2B8ttliwrod0kmlT2klNUqW7gi8g-IZ9ElNGtDshcG5uznfDPVF0jWAHQYhvhVzrDoY4XGLKzqIGRmnSZiSG5yf1ZdRybgkhRAgjzEkj-hiIQq8UyNZamrmqwJ02h_1nVnj9Jrw2FRgrvzASdEV4M8Z54BcKPJvSg6l2bqvAsPJqbmtzOKQHJlaHngQTs9od9l_9QNgTfVTeVDVnS1Goq-iiFCunWj_ajF4G_Wn3oT16uh92s1G7IJywNqKcxyyJJSeCwBjNCME8mZVCUcFQqFNExXG1JEaCSkSJnCGuhGQMQcYxaUY39dyNNa9b5Xy-NFtbhS9zHLM0pQgTGlyd2lVY45xVZb6xei3sLkcwP2adH7POf7MOQFoD7yHI3T_uPOuNh3_sN9i6hSc</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Liu, Xi</creator><creator>Huang, Lijun</creator><creator>Zhang, Hao</creator><creator>Liu, Yujian</creator><creator>Wu, Chunyan</creator><creator>Luo, Qixing</creator><creator>Yin, Feiyang</creator><creator>Yan, Xiaolong</creator><creator>Zhao, Jinbo</creator><creator>Su, Yanwen</creator><creator>He, Jiankang</creator><creator>Li, Weimiao</creator><creator>Li, Dichen</creator><creator>Shi, Changquan</creator><creator>Yang, Pinyi</creator><creator>Zhao, Zhenhuan</creator><creator>Du, Tao</creator><creator>Wu, Weiwei</creator><creator>Li, Xiaofei</creator><creator>Wang, Lei</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5354-9548</orcidid></search><sort><creationdate>20211001</creationdate><title>Facile Amidogen Bio‐Activation Method Can Boost the Soft Tissue Integration on 3D Printed Poly–Ether–Ether–Ketone Interface</title><author>Liu, Xi ; Huang, Lijun ; Zhang, Hao ; Liu, Yujian ; Wu, Chunyan ; Luo, Qixing ; Yin, Feiyang ; Yan, Xiaolong ; Zhao, Jinbo ; Su, Yanwen ; He, Jiankang ; Li, Weimiao ; Li, Dichen ; Shi, Changquan ; Yang, Pinyi ; Zhao, Zhenhuan ; Du, Tao ; Wu, Weiwei ; Li, Xiaofei ; Wang, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3837-14885765d83a3051b33286bfae4a71328914a0011651a4d143db18ead77107823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3D printing</topic><topic>artificial bone</topic><topic>Biomedical materials</topic><topic>Bonding strength</topic><topic>Cell adhesion</topic><topic>Fibroblasts</topic><topic>Healing</topic><topic>Interfaces</topic><topic>Mechanical properties</topic><topic>Polyether ether ketones</topic><topic>poly–ether–ether–ketone</topic><topic>Rabbits</topic><topic>Soft tissues</topic><topic>Substitute bone</topic><topic>surface modification</topic><topic>Three dimensional printing</topic><topic>tissue interface fusion</topic><topic>Transplants & implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xi</creatorcontrib><creatorcontrib>Huang, Lijun</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Liu, Yujian</creatorcontrib><creatorcontrib>Wu, Chunyan</creatorcontrib><creatorcontrib>Luo, Qixing</creatorcontrib><creatorcontrib>Yin, Feiyang</creatorcontrib><creatorcontrib>Yan, Xiaolong</creatorcontrib><creatorcontrib>Zhao, Jinbo</creatorcontrib><creatorcontrib>Su, Yanwen</creatorcontrib><creatorcontrib>He, Jiankang</creatorcontrib><creatorcontrib>Li, Weimiao</creatorcontrib><creatorcontrib>Li, Dichen</creatorcontrib><creatorcontrib>Shi, Changquan</creatorcontrib><creatorcontrib>Yang, Pinyi</creatorcontrib><creatorcontrib>Zhao, Zhenhuan</creatorcontrib><creatorcontrib>Du, Tao</creatorcontrib><creatorcontrib>Wu, Weiwei</creatorcontrib><creatorcontrib>Li, Xiaofei</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced materials interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xi</au><au>Huang, Lijun</au><au>Zhang, Hao</au><au>Liu, Yujian</au><au>Wu, Chunyan</au><au>Luo, Qixing</au><au>Yin, Feiyang</au><au>Yan, Xiaolong</au><au>Zhao, Jinbo</au><au>Su, Yanwen</au><au>He, Jiankang</au><au>Li, Weimiao</au><au>Li, Dichen</au><au>Shi, Changquan</au><au>Yang, Pinyi</au><au>Zhao, Zhenhuan</au><au>Du, Tao</au><au>Wu, Weiwei</au><au>Li, Xiaofei</au><au>Wang, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facile Amidogen Bio‐Activation Method Can Boost the Soft Tissue Integration on 3D Printed Poly–Ether–Ether–Ketone Interface</atitle><jtitle>Advanced materials interfaces</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>8</volume><issue>19</issue><epage>n/a</epage><issn>2196-7350</issn><eissn>2196-7350</eissn><abstract>Poly‐ether‐ether‐ketone (PEEK) implants with good mechanical properties and chemical inertia, meet the urgent needs of bone substitute. However, its inert interface leads to poor soft tissue integration, which prolongs healing time of surgical incision with many complications. Herein, (3‐aminopropyl) triethoxysilane is connected to 3D printed (3DP) PEEK interface by chemical modification. The homogeneous amino groups on amidogen interface enhance PEEK's hydrophilicity and proteinophilia significantly. Fibroblasts cultured on the amidogen PEEK interface show much stronger potential of cell adhesion and migration. Furthermore, soft tissue ingrowth into 3DP PEEK scaffold occurs more and faster in the amidogen interface in vivo. The observation of the microstructure shows tighter implant–tissue bonding interfaces on the amidogen PEEK. To mimic real surgery, 3DP PEEK implants of the same proportions in clinical practice are used to reconstruct the chest wall defects of rabbits. A significant reduction in healing time and incision complications are observed in the amidogen PEEK groups. In addition, 19 related proteins are found in the fibroblasts cultured on the amidogen PEEK interface, which can be used to trace the biological mechanisms. In all, the facile amidogen bio‐activation method can significantly boost the soft tissue integration on 3DP PEEK interface with less surgical complications.
A facile amidogen activation method is developed to solve the interface fusion issue between hard artificial bone and soft tissue. The materials characterizations, cell/tissue experiments, and simulated clinical trial (rabbit) are realized. Interface fusion is improved dramatically and suppressed side effects are achieved, while more options are provided for chest wall reconstruction.</abstract><cop>Weinheim</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/admi.202100547</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5354-9548</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2196-7350 |
ispartof | Advanced materials interfaces, 2021-10, Vol.8 (19), p.n/a |
issn | 2196-7350 2196-7350 |
language | eng |
recordid | cdi_proquest_journals_2579941234 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 3D printing artificial bone Biomedical materials Bonding strength Cell adhesion Fibroblasts Healing Interfaces Mechanical properties Polyether ether ketones poly–ether–ether–ketone Rabbits Soft tissues Substitute bone surface modification Three dimensional printing tissue interface fusion Transplants & implants |
title | Facile Amidogen Bio‐Activation Method Can Boost the Soft Tissue Integration on 3D Printed Poly–Ether–Ether–Ketone Interface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A16%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facile%20Amidogen%20Bio%E2%80%90Activation%20Method%20Can%20Boost%20the%20Soft%20Tissue%20Integration%20on%203D%20Printed%20Poly%E2%80%93Ether%E2%80%93Ether%E2%80%93Ketone%20Interface&rft.jtitle=Advanced%20materials%20interfaces&rft.au=Liu,%20Xi&rft.date=2021-10-01&rft.volume=8&rft.issue=19&rft.epage=n/a&rft.issn=2196-7350&rft.eissn=2196-7350&rft_id=info:doi/10.1002/admi.202100547&rft_dat=%3Cproquest_cross%3E2579941234%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579941234&rft_id=info:pmid/&rfr_iscdi=true |