A numerical study of geometrical effects on solidification of a compound droplet on a cold flat surface
In this study, the solidification process of a compound droplet is numerically simulated by an axisymmetric front-tracking/finite difference technique. The compound droplet placed on a cold flat surface in a gas environment consists of an inner gas core surrounded by a concentric shell phase-change...
Gespeichert in:
Veröffentlicht in: | Acta mechanica 2021-10, Vol.232 (10), p.3767-3779 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3779 |
---|---|
container_issue | 10 |
container_start_page | 3767 |
container_title | Acta mechanica |
container_volume | 232 |
creator | Pham, Binh D. Vu, Truong V. Nguyen, Lien V. T. Ho, Nang X. Nguyen, Cuong T. Nguyen, Hoe D. Nguyen, Vinh T. Vu, Hung V. |
description | In this study, the solidification process of a compound droplet is numerically simulated by an axisymmetric front-tracking/finite difference technique. The compound droplet placed on a cold flat surface in a gas environment consists of an inner gas core surrounded by a concentric shell phase-change liquid that forms an outer droplet. The initial droplet shape assumed as a spherical cap is therefore determined by two wetting angles known as the inner wetting angle (
ϕ
0
i
for the inner core) and the outer wetting angle (
ϕ
0
o
for the outer droplet). During the solidification process, there is the presence of two three-junction points where a prescribed growth angle
ε
is specified. We analyze the solidification process undergoing the influence of the geometrical aspects of the compound droplet including the growth angle and the wetting angles. It is found that the outer wetting angle
ϕ
0
o
and the growth angle have a strong influence on the solidified droplet that the droplet height increases with an increase in
ϕ
0
o
or
ε
while the height increment decreases with an increase in
ϕ
0
o
or with a decrease in
ε
. On the contrary, changing the shape of the inner core, in terms of
ϕ
0
i
, does not affect the outer shape after complete solidification. The effects of these parameters on the solidification time are also considered. |
doi_str_mv | 10.1007/s00707-021-03024-2 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2579867066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A678355032</galeid><sourcerecordid>A678355032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-ff5963552b9908468c3c60ae5ecc29279f904d2931d2f56f01908b0338d892943</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhoMoWKt_wFPA89ZJsptsjqX4BQUveg5pPsqW3U1Nsof-e1NX8CYDGebleScDL0L3BFYEQDym8oCogJIKGNC6ohdoQTiRFZdMXKIFAJCqkQKu0U1KhzJRUZMF2q_xOA0udkb3OOXJnnDweO_C4PIsOu-dyQmHEafQd7bzRc5dGQuosQnDMUyjxTaGY-_ymTurvcW-1xmnKXpt3C268rpP7u63L9Hn89PH5rXavr-8bdbbyrCmzZX3jeSsaehOSmhr3hpmOGjXOGOopEJ6CbWlkhFLfcM9kILtgLHWtpLKmi3Rw7z3GMPX5FJWhzDFsXypaCNkywVwXqjVTO1171Q3-pCjNqWsGzoTRue7oq-5aMstwGgx0NlgYkgpOq-OsRt0PCkC6pyAmhNQJQH1k4A6m9hsSgUe9y7-3fKP6xuQ2oez</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579867066</pqid></control><display><type>article</type><title>A numerical study of geometrical effects on solidification of a compound droplet on a cold flat surface</title><source>SpringerLink Journals</source><creator>Pham, Binh D. ; Vu, Truong V. ; Nguyen, Lien V. T. ; Ho, Nang X. ; Nguyen, Cuong T. ; Nguyen, Hoe D. ; Nguyen, Vinh T. ; Vu, Hung V.</creator><creatorcontrib>Pham, Binh D. ; Vu, Truong V. ; Nguyen, Lien V. T. ; Ho, Nang X. ; Nguyen, Cuong T. ; Nguyen, Hoe D. ; Nguyen, Vinh T. ; Vu, Hung V.</creatorcontrib><description>In this study, the solidification process of a compound droplet is numerically simulated by an axisymmetric front-tracking/finite difference technique. The compound droplet placed on a cold flat surface in a gas environment consists of an inner gas core surrounded by a concentric shell phase-change liquid that forms an outer droplet. The initial droplet shape assumed as a spherical cap is therefore determined by two wetting angles known as the inner wetting angle (
ϕ
0
i
for the inner core) and the outer wetting angle (
ϕ
0
o
for the outer droplet). During the solidification process, there is the presence of two three-junction points where a prescribed growth angle
ε
is specified. We analyze the solidification process undergoing the influence of the geometrical aspects of the compound droplet including the growth angle and the wetting angles. It is found that the outer wetting angle
ϕ
0
o
and the growth angle have a strong influence on the solidified droplet that the droplet height increases with an increase in
ϕ
0
o
or
ε
while the height increment decreases with an increase in
ϕ
0
o
or with a decrease in
ε
. On the contrary, changing the shape of the inner core, in terms of
ϕ
0
i
, does not affect the outer shape after complete solidification. The effects of these parameters on the solidification time are also considered.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-021-03024-2</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Angles (geometry) ; Classical and Continuum Physics ; Control ; Droplets ; Dynamical Systems ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Finite difference method ; Flat surfaces ; Heat and Mass Transfer ; Original Paper ; Solid Mechanics ; Solidification ; Spherical caps ; Theoretical and Applied Mechanics ; Vibration ; Wetting</subject><ispartof>Acta mechanica, 2021-10, Vol.232 (10), p.3767-3779</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-ff5963552b9908468c3c60ae5ecc29279f904d2931d2f56f01908b0338d892943</citedby><cites>FETCH-LOGICAL-c358t-ff5963552b9908468c3c60ae5ecc29279f904d2931d2f56f01908b0338d892943</cites><orcidid>0000-0001-9440-2091</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00707-021-03024-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00707-021-03024-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Pham, Binh D.</creatorcontrib><creatorcontrib>Vu, Truong V.</creatorcontrib><creatorcontrib>Nguyen, Lien V. T.</creatorcontrib><creatorcontrib>Ho, Nang X.</creatorcontrib><creatorcontrib>Nguyen, Cuong T.</creatorcontrib><creatorcontrib>Nguyen, Hoe D.</creatorcontrib><creatorcontrib>Nguyen, Vinh T.</creatorcontrib><creatorcontrib>Vu, Hung V.</creatorcontrib><title>A numerical study of geometrical effects on solidification of a compound droplet on a cold flat surface</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>In this study, the solidification process of a compound droplet is numerically simulated by an axisymmetric front-tracking/finite difference technique. The compound droplet placed on a cold flat surface in a gas environment consists of an inner gas core surrounded by a concentric shell phase-change liquid that forms an outer droplet. The initial droplet shape assumed as a spherical cap is therefore determined by two wetting angles known as the inner wetting angle (
ϕ
0
i
for the inner core) and the outer wetting angle (
ϕ
0
o
for the outer droplet). During the solidification process, there is the presence of two three-junction points where a prescribed growth angle
ε
is specified. We analyze the solidification process undergoing the influence of the geometrical aspects of the compound droplet including the growth angle and the wetting angles. It is found that the outer wetting angle
ϕ
0
o
and the growth angle have a strong influence on the solidified droplet that the droplet height increases with an increase in
ϕ
0
o
or
ε
while the height increment decreases with an increase in
ϕ
0
o
or with a decrease in
ε
. On the contrary, changing the shape of the inner core, in terms of
ϕ
0
i
, does not affect the outer shape after complete solidification. The effects of these parameters on the solidification time are also considered.</description><subject>Angles (geometry)</subject><subject>Classical and Continuum Physics</subject><subject>Control</subject><subject>Droplets</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Finite difference method</subject><subject>Flat surfaces</subject><subject>Heat and Mass Transfer</subject><subject>Original Paper</subject><subject>Solid Mechanics</subject><subject>Solidification</subject><subject>Spherical caps</subject><subject>Theoretical and Applied Mechanics</subject><subject>Vibration</subject><subject>Wetting</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU1LAzEQhoMoWKt_wFPA89ZJsptsjqX4BQUveg5pPsqW3U1Nsof-e1NX8CYDGebleScDL0L3BFYEQDym8oCogJIKGNC6ohdoQTiRFZdMXKIFAJCqkQKu0U1KhzJRUZMF2q_xOA0udkb3OOXJnnDweO_C4PIsOu-dyQmHEafQd7bzRc5dGQuosQnDMUyjxTaGY-_ymTurvcW-1xmnKXpt3C268rpP7u63L9Hn89PH5rXavr-8bdbbyrCmzZX3jeSsaehOSmhr3hpmOGjXOGOopEJ6CbWlkhFLfcM9kILtgLHWtpLKmi3Rw7z3GMPX5FJWhzDFsXypaCNkywVwXqjVTO1171Q3-pCjNqWsGzoTRue7oq-5aMstwGgx0NlgYkgpOq-OsRt0PCkC6pyAmhNQJQH1k4A6m9hsSgUe9y7-3fKP6xuQ2oez</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Pham, Binh D.</creator><creator>Vu, Truong V.</creator><creator>Nguyen, Lien V. T.</creator><creator>Ho, Nang X.</creator><creator>Nguyen, Cuong T.</creator><creator>Nguyen, Hoe D.</creator><creator>Nguyen, Vinh T.</creator><creator>Vu, Hung V.</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-9440-2091</orcidid></search><sort><creationdate>20211001</creationdate><title>A numerical study of geometrical effects on solidification of a compound droplet on a cold flat surface</title><author>Pham, Binh D. ; Vu, Truong V. ; Nguyen, Lien V. T. ; Ho, Nang X. ; Nguyen, Cuong T. ; Nguyen, Hoe D. ; Nguyen, Vinh T. ; Vu, Hung V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-ff5963552b9908468c3c60ae5ecc29279f904d2931d2f56f01908b0338d892943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Angles (geometry)</topic><topic>Classical and Continuum Physics</topic><topic>Control</topic><topic>Droplets</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Finite difference method</topic><topic>Flat surfaces</topic><topic>Heat and Mass Transfer</topic><topic>Original Paper</topic><topic>Solid Mechanics</topic><topic>Solidification</topic><topic>Spherical caps</topic><topic>Theoretical and Applied Mechanics</topic><topic>Vibration</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pham, Binh D.</creatorcontrib><creatorcontrib>Vu, Truong V.</creatorcontrib><creatorcontrib>Nguyen, Lien V. T.</creatorcontrib><creatorcontrib>Ho, Nang X.</creatorcontrib><creatorcontrib>Nguyen, Cuong T.</creatorcontrib><creatorcontrib>Nguyen, Hoe D.</creatorcontrib><creatorcontrib>Nguyen, Vinh T.</creatorcontrib><creatorcontrib>Vu, Hung V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pham, Binh D.</au><au>Vu, Truong V.</au><au>Nguyen, Lien V. T.</au><au>Ho, Nang X.</au><au>Nguyen, Cuong T.</au><au>Nguyen, Hoe D.</au><au>Nguyen, Vinh T.</au><au>Vu, Hung V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A numerical study of geometrical effects on solidification of a compound droplet on a cold flat surface</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>232</volume><issue>10</issue><spage>3767</spage><epage>3779</epage><pages>3767-3779</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><abstract>In this study, the solidification process of a compound droplet is numerically simulated by an axisymmetric front-tracking/finite difference technique. The compound droplet placed on a cold flat surface in a gas environment consists of an inner gas core surrounded by a concentric shell phase-change liquid that forms an outer droplet. The initial droplet shape assumed as a spherical cap is therefore determined by two wetting angles known as the inner wetting angle (
ϕ
0
i
for the inner core) and the outer wetting angle (
ϕ
0
o
for the outer droplet). During the solidification process, there is the presence of two three-junction points where a prescribed growth angle
ε
is specified. We analyze the solidification process undergoing the influence of the geometrical aspects of the compound droplet including the growth angle and the wetting angles. It is found that the outer wetting angle
ϕ
0
o
and the growth angle have a strong influence on the solidified droplet that the droplet height increases with an increase in
ϕ
0
o
or
ε
while the height increment decreases with an increase in
ϕ
0
o
or with a decrease in
ε
. On the contrary, changing the shape of the inner core, in terms of
ϕ
0
i
, does not affect the outer shape after complete solidification. The effects of these parameters on the solidification time are also considered.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-021-03024-2</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9440-2091</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-5970 |
ispartof | Acta mechanica, 2021-10, Vol.232 (10), p.3767-3779 |
issn | 0001-5970 1619-6937 |
language | eng |
recordid | cdi_proquest_journals_2579867066 |
source | SpringerLink Journals |
subjects | Angles (geometry) Classical and Continuum Physics Control Droplets Dynamical Systems Engineering Engineering Fluid Dynamics Engineering Thermodynamics Finite difference method Flat surfaces Heat and Mass Transfer Original Paper Solid Mechanics Solidification Spherical caps Theoretical and Applied Mechanics Vibration Wetting |
title | A numerical study of geometrical effects on solidification of a compound droplet on a cold flat surface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A33%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20numerical%20study%20of%20geometrical%20effects%20on%20solidification%20of%20a%20compound%20droplet%20on%20a%20cold%20flat%20surface&rft.jtitle=Acta%20mechanica&rft.au=Pham,%20Binh%20D.&rft.date=2021-10-01&rft.volume=232&rft.issue=10&rft.spage=3767&rft.epage=3779&rft.pages=3767-3779&rft.issn=0001-5970&rft.eissn=1619-6937&rft_id=info:doi/10.1007/s00707-021-03024-2&rft_dat=%3Cgale_proqu%3EA678355032%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579867066&rft_id=info:pmid/&rft_galeid=A678355032&rfr_iscdi=true |