Stability preserving NSFD scheme for a cooperative and supportive network
A continuous dynamical system of a Cooperative Supportive Neural Network is discretized using Non-Standard Finite Difference scheme. Results in the direction of the existence of equilibria, sufficient conditions for local and global stability of equilibrium are established for the discrete form of t...
Gespeichert in:
Veröffentlicht in: | International journal of dynamics and control 2021-12, Vol.9 (4), p.1576-1588 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1588 |
---|---|
container_issue | 4 |
container_start_page | 1576 |
container_title | International journal of dynamics and control |
container_volume | 9 |
creator | Ratnam, K. Venkata Rao, P. Raja Sekhara Shirisha, G. |
description | A continuous dynamical system of a Cooperative Supportive Neural Network is discretized using Non-Standard Finite Difference scheme. Results in the direction of the existence of equilibria, sufficient conditions for local and global stability of equilibrium are established for the discrete form of the network. Results are compared with those of the continuous model. Theoretical numerical examples with simulations are provided to understand the results. Our study establishes that the Non-Standard Finite Difference scheme chosen here preserves the properties of the continuous system for any step size. Also, the input-output relations of difference equation model are tested using a recently developed technique. Our study is the first of its kind in this area of neural networks. |
doi_str_mv | 10.1007/s40435-021-00777-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2579707874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2579707874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c8c978d094f048dbd24076028a5fd4e9ad68ba361c94b118d7f0716650fa08393</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWLR_wFPA8-okm90kR6lWC0UPVfAWsvmoW9vNmmwr_feuXdGbp5mB530HHoQuCFwRAH6dGLC8yICSrD85z4ojNKJEFhktpTj-3cXrKRqntALoUQaUyRGaLTpd1eu62-M2uuTirm6W-HExvcXJvLmNwz5ErLEJoXVRd_XOYd1YnLZtG-LhbFz3GeL7OTrxep3c-GeeoZfp3fPkIZs_3c8mN_PM5ER2mRFGcmFBMg9M2MpSBrwEKnThLXNS21JUOi-JkawiRFjugZOyLMBrELnMz9Dl0NvG8LF1qVOrsI1N_1LRgksOXHDWU3SgTAwpRedVG-uNjntFQH1bU4M11atQB2uq6EP5EEo93Cxd_Kv-J_UFeQRu3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579707874</pqid></control><display><type>article</type><title>Stability preserving NSFD scheme for a cooperative and supportive network</title><source>SpringerLink Journals</source><creator>Ratnam, K. Venkata ; Rao, P. Raja Sekhara ; Shirisha, G.</creator><creatorcontrib>Ratnam, K. Venkata ; Rao, P. Raja Sekhara ; Shirisha, G.</creatorcontrib><description>A continuous dynamical system of a Cooperative Supportive Neural Network is discretized using Non-Standard Finite Difference scheme. Results in the direction of the existence of equilibria, sufficient conditions for local and global stability of equilibrium are established for the discrete form of the network. Results are compared with those of the continuous model. Theoretical numerical examples with simulations are provided to understand the results. Our study establishes that the Non-Standard Finite Difference scheme chosen here preserves the properties of the continuous system for any step size. Also, the input-output relations of difference equation model are tested using a recently developed technique. Our study is the first of its kind in this area of neural networks.</description><identifier>ISSN: 2195-268X</identifier><identifier>EISSN: 2195-2698</identifier><identifier>DOI: 10.1007/s40435-021-00777-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Complexity ; Control ; Control and Systems Theory ; Difference equations ; Dynamical Systems ; Engineering ; Finite difference method ; Mathematical analysis ; Neural networks ; Stability ; Vibration</subject><ispartof>International journal of dynamics and control, 2021-12, Vol.9 (4), p.1576-1588</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c8c978d094f048dbd24076028a5fd4e9ad68ba361c94b118d7f0716650fa08393</citedby><cites>FETCH-LOGICAL-c319t-c8c978d094f048dbd24076028a5fd4e9ad68ba361c94b118d7f0716650fa08393</cites><orcidid>0000-0002-0845-3819</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40435-021-00777-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40435-021-00777-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Ratnam, K. Venkata</creatorcontrib><creatorcontrib>Rao, P. Raja Sekhara</creatorcontrib><creatorcontrib>Shirisha, G.</creatorcontrib><title>Stability preserving NSFD scheme for a cooperative and supportive network</title><title>International journal of dynamics and control</title><addtitle>Int. J. Dynam. Control</addtitle><description>A continuous dynamical system of a Cooperative Supportive Neural Network is discretized using Non-Standard Finite Difference scheme. Results in the direction of the existence of equilibria, sufficient conditions for local and global stability of equilibrium are established for the discrete form of the network. Results are compared with those of the continuous model. Theoretical numerical examples with simulations are provided to understand the results. Our study establishes that the Non-Standard Finite Difference scheme chosen here preserves the properties of the continuous system for any step size. Also, the input-output relations of difference equation model are tested using a recently developed technique. Our study is the first of its kind in this area of neural networks.</description><subject>Complexity</subject><subject>Control</subject><subject>Control and Systems Theory</subject><subject>Difference equations</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Finite difference method</subject><subject>Mathematical analysis</subject><subject>Neural networks</subject><subject>Stability</subject><subject>Vibration</subject><issn>2195-268X</issn><issn>2195-2698</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWLR_wFPA8-okm90kR6lWC0UPVfAWsvmoW9vNmmwr_feuXdGbp5mB530HHoQuCFwRAH6dGLC8yICSrD85z4ojNKJEFhktpTj-3cXrKRqntALoUQaUyRGaLTpd1eu62-M2uuTirm6W-HExvcXJvLmNwz5ErLEJoXVRd_XOYd1YnLZtG-LhbFz3GeL7OTrxep3c-GeeoZfp3fPkIZs_3c8mN_PM5ER2mRFGcmFBMg9M2MpSBrwEKnThLXNS21JUOi-JkawiRFjugZOyLMBrELnMz9Dl0NvG8LF1qVOrsI1N_1LRgksOXHDWU3SgTAwpRedVG-uNjntFQH1bU4M11atQB2uq6EP5EEo93Cxd_Kv-J_UFeQRu3w</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Ratnam, K. Venkata</creator><creator>Rao, P. Raja Sekhara</creator><creator>Shirisha, G.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0845-3819</orcidid></search><sort><creationdate>20211201</creationdate><title>Stability preserving NSFD scheme for a cooperative and supportive network</title><author>Ratnam, K. Venkata ; Rao, P. Raja Sekhara ; Shirisha, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c8c978d094f048dbd24076028a5fd4e9ad68ba361c94b118d7f0716650fa08393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Complexity</topic><topic>Control</topic><topic>Control and Systems Theory</topic><topic>Difference equations</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Finite difference method</topic><topic>Mathematical analysis</topic><topic>Neural networks</topic><topic>Stability</topic><topic>Vibration</topic><toplevel>online_resources</toplevel><creatorcontrib>Ratnam, K. Venkata</creatorcontrib><creatorcontrib>Rao, P. Raja Sekhara</creatorcontrib><creatorcontrib>Shirisha, G.</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of dynamics and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ratnam, K. Venkata</au><au>Rao, P. Raja Sekhara</au><au>Shirisha, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability preserving NSFD scheme for a cooperative and supportive network</atitle><jtitle>International journal of dynamics and control</jtitle><stitle>Int. J. Dynam. Control</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>9</volume><issue>4</issue><spage>1576</spage><epage>1588</epage><pages>1576-1588</pages><issn>2195-268X</issn><eissn>2195-2698</eissn><abstract>A continuous dynamical system of a Cooperative Supportive Neural Network is discretized using Non-Standard Finite Difference scheme. Results in the direction of the existence of equilibria, sufficient conditions for local and global stability of equilibrium are established for the discrete form of the network. Results are compared with those of the continuous model. Theoretical numerical examples with simulations are provided to understand the results. Our study establishes that the Non-Standard Finite Difference scheme chosen here preserves the properties of the continuous system for any step size. Also, the input-output relations of difference equation model are tested using a recently developed technique. Our study is the first of its kind in this area of neural networks.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40435-021-00777-5</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0845-3819</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2195-268X |
ispartof | International journal of dynamics and control, 2021-12, Vol.9 (4), p.1576-1588 |
issn | 2195-268X 2195-2698 |
language | eng |
recordid | cdi_proquest_journals_2579707874 |
source | SpringerLink Journals |
subjects | Complexity Control Control and Systems Theory Difference equations Dynamical Systems Engineering Finite difference method Mathematical analysis Neural networks Stability Vibration |
title | Stability preserving NSFD scheme for a cooperative and supportive network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A19%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20preserving%20NSFD%20scheme%20for%20a%20cooperative%20and%20supportive%20network&rft.jtitle=International%20journal%20of%20dynamics%20and%20control&rft.au=Ratnam,%20K.%20Venkata&rft.date=2021-12-01&rft.volume=9&rft.issue=4&rft.spage=1576&rft.epage=1588&rft.pages=1576-1588&rft.issn=2195-268X&rft.eissn=2195-2698&rft_id=info:doi/10.1007/s40435-021-00777-5&rft_dat=%3Cproquest_cross%3E2579707874%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579707874&rft_id=info:pmid/&rfr_iscdi=true |