Stability preserving NSFD scheme for a cooperative and supportive network

A continuous dynamical system of a Cooperative Supportive Neural Network is discretized using Non-Standard Finite Difference scheme. Results in the direction of the existence of equilibria, sufficient conditions for local and global stability of equilibrium are established for the discrete form of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of dynamics and control 2021-12, Vol.9 (4), p.1576-1588
Hauptverfasser: Ratnam, K. Venkata, Rao, P. Raja Sekhara, Shirisha, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1588
container_issue 4
container_start_page 1576
container_title International journal of dynamics and control
container_volume 9
creator Ratnam, K. Venkata
Rao, P. Raja Sekhara
Shirisha, G.
description A continuous dynamical system of a Cooperative Supportive Neural Network is discretized using Non-Standard Finite Difference scheme. Results in the direction of the existence of equilibria, sufficient conditions for local and global stability of equilibrium are established for the discrete form of the network. Results are compared with those of the continuous model. Theoretical numerical examples with simulations are provided to understand the results. Our study establishes that the Non-Standard Finite Difference scheme chosen here preserves the properties of the continuous system for any step size. Also, the input-output relations of difference equation model are tested using a recently developed technique. Our study is the first of its kind in this area of neural networks.
doi_str_mv 10.1007/s40435-021-00777-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2579707874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2579707874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c8c978d094f048dbd24076028a5fd4e9ad68ba361c94b118d7f0716650fa08393</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWLR_wFPA8-okm90kR6lWC0UPVfAWsvmoW9vNmmwr_feuXdGbp5mB530HHoQuCFwRAH6dGLC8yICSrD85z4ojNKJEFhktpTj-3cXrKRqntALoUQaUyRGaLTpd1eu62-M2uuTirm6W-HExvcXJvLmNwz5ErLEJoXVRd_XOYd1YnLZtG-LhbFz3GeL7OTrxep3c-GeeoZfp3fPkIZs_3c8mN_PM5ER2mRFGcmFBMg9M2MpSBrwEKnThLXNS21JUOi-JkawiRFjugZOyLMBrELnMz9Dl0NvG8LF1qVOrsI1N_1LRgksOXHDWU3SgTAwpRedVG-uNjntFQH1bU4M11atQB2uq6EP5EEo93Cxd_Kv-J_UFeQRu3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579707874</pqid></control><display><type>article</type><title>Stability preserving NSFD scheme for a cooperative and supportive network</title><source>SpringerLink Journals</source><creator>Ratnam, K. Venkata ; Rao, P. Raja Sekhara ; Shirisha, G.</creator><creatorcontrib>Ratnam, K. Venkata ; Rao, P. Raja Sekhara ; Shirisha, G.</creatorcontrib><description>A continuous dynamical system of a Cooperative Supportive Neural Network is discretized using Non-Standard Finite Difference scheme. Results in the direction of the existence of equilibria, sufficient conditions for local and global stability of equilibrium are established for the discrete form of the network. Results are compared with those of the continuous model. Theoretical numerical examples with simulations are provided to understand the results. Our study establishes that the Non-Standard Finite Difference scheme chosen here preserves the properties of the continuous system for any step size. Also, the input-output relations of difference equation model are tested using a recently developed technique. Our study is the first of its kind in this area of neural networks.</description><identifier>ISSN: 2195-268X</identifier><identifier>EISSN: 2195-2698</identifier><identifier>DOI: 10.1007/s40435-021-00777-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Complexity ; Control ; Control and Systems Theory ; Difference equations ; Dynamical Systems ; Engineering ; Finite difference method ; Mathematical analysis ; Neural networks ; Stability ; Vibration</subject><ispartof>International journal of dynamics and control, 2021-12, Vol.9 (4), p.1576-1588</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c8c978d094f048dbd24076028a5fd4e9ad68ba361c94b118d7f0716650fa08393</citedby><cites>FETCH-LOGICAL-c319t-c8c978d094f048dbd24076028a5fd4e9ad68ba361c94b118d7f0716650fa08393</cites><orcidid>0000-0002-0845-3819</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40435-021-00777-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40435-021-00777-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Ratnam, K. Venkata</creatorcontrib><creatorcontrib>Rao, P. Raja Sekhara</creatorcontrib><creatorcontrib>Shirisha, G.</creatorcontrib><title>Stability preserving NSFD scheme for a cooperative and supportive network</title><title>International journal of dynamics and control</title><addtitle>Int. J. Dynam. Control</addtitle><description>A continuous dynamical system of a Cooperative Supportive Neural Network is discretized using Non-Standard Finite Difference scheme. Results in the direction of the existence of equilibria, sufficient conditions for local and global stability of equilibrium are established for the discrete form of the network. Results are compared with those of the continuous model. Theoretical numerical examples with simulations are provided to understand the results. Our study establishes that the Non-Standard Finite Difference scheme chosen here preserves the properties of the continuous system for any step size. Also, the input-output relations of difference equation model are tested using a recently developed technique. Our study is the first of its kind in this area of neural networks.</description><subject>Complexity</subject><subject>Control</subject><subject>Control and Systems Theory</subject><subject>Difference equations</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Finite difference method</subject><subject>Mathematical analysis</subject><subject>Neural networks</subject><subject>Stability</subject><subject>Vibration</subject><issn>2195-268X</issn><issn>2195-2698</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWLR_wFPA8-okm90kR6lWC0UPVfAWsvmoW9vNmmwr_feuXdGbp5mB530HHoQuCFwRAH6dGLC8yICSrD85z4ojNKJEFhktpTj-3cXrKRqntALoUQaUyRGaLTpd1eu62-M2uuTirm6W-HExvcXJvLmNwz5ErLEJoXVRd_XOYd1YnLZtG-LhbFz3GeL7OTrxep3c-GeeoZfp3fPkIZs_3c8mN_PM5ER2mRFGcmFBMg9M2MpSBrwEKnThLXNS21JUOi-JkawiRFjugZOyLMBrELnMz9Dl0NvG8LF1qVOrsI1N_1LRgksOXHDWU3SgTAwpRedVG-uNjntFQH1bU4M11atQB2uq6EP5EEo93Cxd_Kv-J_UFeQRu3w</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Ratnam, K. Venkata</creator><creator>Rao, P. Raja Sekhara</creator><creator>Shirisha, G.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0845-3819</orcidid></search><sort><creationdate>20211201</creationdate><title>Stability preserving NSFD scheme for a cooperative and supportive network</title><author>Ratnam, K. Venkata ; Rao, P. Raja Sekhara ; Shirisha, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c8c978d094f048dbd24076028a5fd4e9ad68ba361c94b118d7f0716650fa08393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Complexity</topic><topic>Control</topic><topic>Control and Systems Theory</topic><topic>Difference equations</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Finite difference method</topic><topic>Mathematical analysis</topic><topic>Neural networks</topic><topic>Stability</topic><topic>Vibration</topic><toplevel>online_resources</toplevel><creatorcontrib>Ratnam, K. Venkata</creatorcontrib><creatorcontrib>Rao, P. Raja Sekhara</creatorcontrib><creatorcontrib>Shirisha, G.</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of dynamics and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ratnam, K. Venkata</au><au>Rao, P. Raja Sekhara</au><au>Shirisha, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability preserving NSFD scheme for a cooperative and supportive network</atitle><jtitle>International journal of dynamics and control</jtitle><stitle>Int. J. Dynam. Control</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>9</volume><issue>4</issue><spage>1576</spage><epage>1588</epage><pages>1576-1588</pages><issn>2195-268X</issn><eissn>2195-2698</eissn><abstract>A continuous dynamical system of a Cooperative Supportive Neural Network is discretized using Non-Standard Finite Difference scheme. Results in the direction of the existence of equilibria, sufficient conditions for local and global stability of equilibrium are established for the discrete form of the network. Results are compared with those of the continuous model. Theoretical numerical examples with simulations are provided to understand the results. Our study establishes that the Non-Standard Finite Difference scheme chosen here preserves the properties of the continuous system for any step size. Also, the input-output relations of difference equation model are tested using a recently developed technique. Our study is the first of its kind in this area of neural networks.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40435-021-00777-5</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0845-3819</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2195-268X
ispartof International journal of dynamics and control, 2021-12, Vol.9 (4), p.1576-1588
issn 2195-268X
2195-2698
language eng
recordid cdi_proquest_journals_2579707874
source SpringerLink Journals
subjects Complexity
Control
Control and Systems Theory
Difference equations
Dynamical Systems
Engineering
Finite difference method
Mathematical analysis
Neural networks
Stability
Vibration
title Stability preserving NSFD scheme for a cooperative and supportive network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A19%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20preserving%20NSFD%20scheme%20for%20a%20cooperative%20and%20supportive%20network&rft.jtitle=International%20journal%20of%20dynamics%20and%20control&rft.au=Ratnam,%20K.%20Venkata&rft.date=2021-12-01&rft.volume=9&rft.issue=4&rft.spage=1576&rft.epage=1588&rft.pages=1576-1588&rft.issn=2195-268X&rft.eissn=2195-2698&rft_id=info:doi/10.1007/s40435-021-00777-5&rft_dat=%3Cproquest_cross%3E2579707874%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579707874&rft_id=info:pmid/&rfr_iscdi=true