NiFe‐NiFe2O4/rGO composites: Controlled preparation and superior lithium storage properties
Binary transition‐metal oxides with spinel structure have great potential as advanced anode materials for lithium‐ion batteries (LIBs). Herein, NiFe‐NiFe2O4/ reduced graphene oxide (rGO) composites are obtained via a facile cyanometallic framework precursor strategy to improve the lithium storage pe...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 2021-12, Vol.104 (12), p.6696-6708 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6708 |
---|---|
container_issue | 12 |
container_start_page | 6696 |
container_title | Journal of the American Ceramic Society |
container_volume | 104 |
creator | Chen, Huaiyang Shen, Xiaoping Xu, Keqiang Chen, Yao Yuan, Aihua Ji, Zhenyuan Wang, Zhitao Zhu, Guoxing |
description | Binary transition‐metal oxides with spinel structure have great potential as advanced anode materials for lithium‐ion batteries (LIBs). Herein, NiFe‐NiFe2O4/ reduced graphene oxide (rGO) composites are obtained via a facile cyanometallic framework precursor strategy to improve the lithium storage performance of NiFe2O4. In the composites, NiFe‐NiFe2O4 nanoparticles with adjustable mass ratios of NiFe2O4 to NiFe alloy are homogeneously deposited on rGO sheets. As anode material for LIBs, the optimized NiFe‐NiFe2O4/rGO composite displays remarkably enhanced lithium storage performance with an initial specific capacity as high as 1362 mAh g−1 at 0.1 A g−1 and a decent capacity retention of ca. 80% after 130 cycles. Besides, the composite delivers a reversible capacity of 550 mAh g−1 at 1 A g−1 after 300 cycles. During the charge–discharge cycles, the aggregation of the NiFe‐NiFe2O4 nanoparticles and the structural collapse of the electrode can be well alleviated by rGO sheets. Moreover, the conductivity of the electrode can be significantly improved by the well‐conductive NiFe alloy and rGO sheets. All these contribute to the improved lithium storage performance of NiFe‐NiFe2O4/rGO composites.
NiFe‐NiFe2O4/rGOcomposites with NiFe‐NiFe2O4 nanoparticles homogeneouslydeposited on reduced graphene oxide (rGO) sheets are prepared via in‐situ growth of Ni[Fe(CN)5NO]·xH2O nanoparticles on grapheneoxide (GO) sheets followed by a two‐step thermal treatment, and the optimized NiFe‐NiFe2O4/rGOcomposite displays remarkably enhanced lithium storageperformance. |
doi_str_mv | 10.1111/jace.17986 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2579540793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2579540793</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2256-f7baea4e6398801fb6e3a0b5d661bca7a1fc89b047c04254ef3db82ceeb38d173</originalsourceid><addsrcrecordid>eNotkEFOwzAQRS0EEqWw4QSRWKe1HSd22FVRW0AV2cASWU4yAVdpHGxHqDuOwBk5CW7LbP58zdd86SF0S_CMhJlvVQ0zwnORnaEJSVMS05xk52iCMaYxFxRfoivntsGSXLAJenvWK_j9_jkILdncrsuoNrvBOO3B3UeF6b01XQdNNFgYlFVemz5SfRO5cQCrjY067T_0uIucN1a9QwiacPEa3DW6aFXn4OZfp-h1tXwpHuJNuX4sFpt4oDTN4pZXChSDLMmFwKStMkgUrtImy0hVK65IW4u8wozXmNGUQZs0laA1QJWIhvBkiu5Of0P15wjOy60ZbR8qJU15njLM8ySkyCn1pTvYy8HqnbJ7SbA8sJMHdvLITj4tiuVxS_4AEl1mcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579540793</pqid></control><display><type>article</type><title>NiFe‐NiFe2O4/rGO composites: Controlled preparation and superior lithium storage properties</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Huaiyang ; Shen, Xiaoping ; Xu, Keqiang ; Chen, Yao ; Yuan, Aihua ; Ji, Zhenyuan ; Wang, Zhitao ; Zhu, Guoxing</creator><creatorcontrib>Chen, Huaiyang ; Shen, Xiaoping ; Xu, Keqiang ; Chen, Yao ; Yuan, Aihua ; Ji, Zhenyuan ; Wang, Zhitao ; Zhu, Guoxing</creatorcontrib><description>Binary transition‐metal oxides with spinel structure have great potential as advanced anode materials for lithium‐ion batteries (LIBs). Herein, NiFe‐NiFe2O4/ reduced graphene oxide (rGO) composites are obtained via a facile cyanometallic framework precursor strategy to improve the lithium storage performance of NiFe2O4. In the composites, NiFe‐NiFe2O4 nanoparticles with adjustable mass ratios of NiFe2O4 to NiFe alloy are homogeneously deposited on rGO sheets. As anode material for LIBs, the optimized NiFe‐NiFe2O4/rGO composite displays remarkably enhanced lithium storage performance with an initial specific capacity as high as 1362 mAh g−1 at 0.1 A g−1 and a decent capacity retention of ca. 80% after 130 cycles. Besides, the composite delivers a reversible capacity of 550 mAh g−1 at 1 A g−1 after 300 cycles. During the charge–discharge cycles, the aggregation of the NiFe‐NiFe2O4 nanoparticles and the structural collapse of the electrode can be well alleviated by rGO sheets. Moreover, the conductivity of the electrode can be significantly improved by the well‐conductive NiFe alloy and rGO sheets. All these contribute to the improved lithium storage performance of NiFe‐NiFe2O4/rGO composites.
NiFe‐NiFe2O4/rGOcomposites with NiFe‐NiFe2O4 nanoparticles homogeneouslydeposited on reduced graphene oxide (rGO) sheets are prepared via in‐situ growth of Ni[Fe(CN)5NO]·xH2O nanoparticles on grapheneoxide (GO) sheets followed by a two‐step thermal treatment, and the optimized NiFe‐NiFe2O4/rGOcomposite displays remarkably enhanced lithium storageperformance.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.17986</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Composite materials ; controllable synthesis ; Electrode materials ; Graphene ; Intermetallic compounds ; Iron compounds ; lithium storage ; Lithium-ion batteries ; Mass ratios ; Metal oxides ; nanocomposites ; Nanoparticles ; Nickel base alloys ; Nickel compounds ; Nickel ferrites ; NiFe‐NiFe2O4 ; reduced graphene oxide ; Sheets</subject><ispartof>Journal of the American Ceramic Society, 2021-12, Vol.104 (12), p.6696-6708</ispartof><rights>2021 The American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0366-6433</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.17986$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.17986$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Chen, Huaiyang</creatorcontrib><creatorcontrib>Shen, Xiaoping</creatorcontrib><creatorcontrib>Xu, Keqiang</creatorcontrib><creatorcontrib>Chen, Yao</creatorcontrib><creatorcontrib>Yuan, Aihua</creatorcontrib><creatorcontrib>Ji, Zhenyuan</creatorcontrib><creatorcontrib>Wang, Zhitao</creatorcontrib><creatorcontrib>Zhu, Guoxing</creatorcontrib><title>NiFe‐NiFe2O4/rGO composites: Controlled preparation and superior lithium storage properties</title><title>Journal of the American Ceramic Society</title><description>Binary transition‐metal oxides with spinel structure have great potential as advanced anode materials for lithium‐ion batteries (LIBs). Herein, NiFe‐NiFe2O4/ reduced graphene oxide (rGO) composites are obtained via a facile cyanometallic framework precursor strategy to improve the lithium storage performance of NiFe2O4. In the composites, NiFe‐NiFe2O4 nanoparticles with adjustable mass ratios of NiFe2O4 to NiFe alloy are homogeneously deposited on rGO sheets. As anode material for LIBs, the optimized NiFe‐NiFe2O4/rGO composite displays remarkably enhanced lithium storage performance with an initial specific capacity as high as 1362 mAh g−1 at 0.1 A g−1 and a decent capacity retention of ca. 80% after 130 cycles. Besides, the composite delivers a reversible capacity of 550 mAh g−1 at 1 A g−1 after 300 cycles. During the charge–discharge cycles, the aggregation of the NiFe‐NiFe2O4 nanoparticles and the structural collapse of the electrode can be well alleviated by rGO sheets. Moreover, the conductivity of the electrode can be significantly improved by the well‐conductive NiFe alloy and rGO sheets. All these contribute to the improved lithium storage performance of NiFe‐NiFe2O4/rGO composites.
NiFe‐NiFe2O4/rGOcomposites with NiFe‐NiFe2O4 nanoparticles homogeneouslydeposited on reduced graphene oxide (rGO) sheets are prepared via in‐situ growth of Ni[Fe(CN)5NO]·xH2O nanoparticles on grapheneoxide (GO) sheets followed by a two‐step thermal treatment, and the optimized NiFe‐NiFe2O4/rGOcomposite displays remarkably enhanced lithium storageperformance.</description><subject>Anodes</subject><subject>Composite materials</subject><subject>controllable synthesis</subject><subject>Electrode materials</subject><subject>Graphene</subject><subject>Intermetallic compounds</subject><subject>Iron compounds</subject><subject>lithium storage</subject><subject>Lithium-ion batteries</subject><subject>Mass ratios</subject><subject>Metal oxides</subject><subject>nanocomposites</subject><subject>Nanoparticles</subject><subject>Nickel base alloys</subject><subject>Nickel compounds</subject><subject>Nickel ferrites</subject><subject>NiFe‐NiFe2O4</subject><subject>reduced graphene oxide</subject><subject>Sheets</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkEFOwzAQRS0EEqWw4QSRWKe1HSd22FVRW0AV2cASWU4yAVdpHGxHqDuOwBk5CW7LbP58zdd86SF0S_CMhJlvVQ0zwnORnaEJSVMS05xk52iCMaYxFxRfoivntsGSXLAJenvWK_j9_jkILdncrsuoNrvBOO3B3UeF6b01XQdNNFgYlFVemz5SfRO5cQCrjY067T_0uIucN1a9QwiacPEa3DW6aFXn4OZfp-h1tXwpHuJNuX4sFpt4oDTN4pZXChSDLMmFwKStMkgUrtImy0hVK65IW4u8wozXmNGUQZs0laA1QJWIhvBkiu5Of0P15wjOy60ZbR8qJU15njLM8ySkyCn1pTvYy8HqnbJ7SbA8sJMHdvLITj4tiuVxS_4AEl1mcg</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Chen, Huaiyang</creator><creator>Shen, Xiaoping</creator><creator>Xu, Keqiang</creator><creator>Chen, Yao</creator><creator>Yuan, Aihua</creator><creator>Ji, Zhenyuan</creator><creator>Wang, Zhitao</creator><creator>Zhu, Guoxing</creator><general>Wiley Subscription Services, Inc</general><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-0366-6433</orcidid></search><sort><creationdate>202112</creationdate><title>NiFe‐NiFe2O4/rGO composites: Controlled preparation and superior lithium storage properties</title><author>Chen, Huaiyang ; Shen, Xiaoping ; Xu, Keqiang ; Chen, Yao ; Yuan, Aihua ; Ji, Zhenyuan ; Wang, Zhitao ; Zhu, Guoxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2256-f7baea4e6398801fb6e3a0b5d661bca7a1fc89b047c04254ef3db82ceeb38d173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anodes</topic><topic>Composite materials</topic><topic>controllable synthesis</topic><topic>Electrode materials</topic><topic>Graphene</topic><topic>Intermetallic compounds</topic><topic>Iron compounds</topic><topic>lithium storage</topic><topic>Lithium-ion batteries</topic><topic>Mass ratios</topic><topic>Metal oxides</topic><topic>nanocomposites</topic><topic>Nanoparticles</topic><topic>Nickel base alloys</topic><topic>Nickel compounds</topic><topic>Nickel ferrites</topic><topic>NiFe‐NiFe2O4</topic><topic>reduced graphene oxide</topic><topic>Sheets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Huaiyang</creatorcontrib><creatorcontrib>Shen, Xiaoping</creatorcontrib><creatorcontrib>Xu, Keqiang</creatorcontrib><creatorcontrib>Chen, Yao</creatorcontrib><creatorcontrib>Yuan, Aihua</creatorcontrib><creatorcontrib>Ji, Zhenyuan</creatorcontrib><creatorcontrib>Wang, Zhitao</creatorcontrib><creatorcontrib>Zhu, Guoxing</creatorcontrib><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Huaiyang</au><au>Shen, Xiaoping</au><au>Xu, Keqiang</au><au>Chen, Yao</au><au>Yuan, Aihua</au><au>Ji, Zhenyuan</au><au>Wang, Zhitao</au><au>Zhu, Guoxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NiFe‐NiFe2O4/rGO composites: Controlled preparation and superior lithium storage properties</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2021-12</date><risdate>2021</risdate><volume>104</volume><issue>12</issue><spage>6696</spage><epage>6708</epage><pages>6696-6708</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>Binary transition‐metal oxides with spinel structure have great potential as advanced anode materials for lithium‐ion batteries (LIBs). Herein, NiFe‐NiFe2O4/ reduced graphene oxide (rGO) composites are obtained via a facile cyanometallic framework precursor strategy to improve the lithium storage performance of NiFe2O4. In the composites, NiFe‐NiFe2O4 nanoparticles with adjustable mass ratios of NiFe2O4 to NiFe alloy are homogeneously deposited on rGO sheets. As anode material for LIBs, the optimized NiFe‐NiFe2O4/rGO composite displays remarkably enhanced lithium storage performance with an initial specific capacity as high as 1362 mAh g−1 at 0.1 A g−1 and a decent capacity retention of ca. 80% after 130 cycles. Besides, the composite delivers a reversible capacity of 550 mAh g−1 at 1 A g−1 after 300 cycles. During the charge–discharge cycles, the aggregation of the NiFe‐NiFe2O4 nanoparticles and the structural collapse of the electrode can be well alleviated by rGO sheets. Moreover, the conductivity of the electrode can be significantly improved by the well‐conductive NiFe alloy and rGO sheets. All these contribute to the improved lithium storage performance of NiFe‐NiFe2O4/rGO composites.
NiFe‐NiFe2O4/rGOcomposites with NiFe‐NiFe2O4 nanoparticles homogeneouslydeposited on reduced graphene oxide (rGO) sheets are prepared via in‐situ growth of Ni[Fe(CN)5NO]·xH2O nanoparticles on grapheneoxide (GO) sheets followed by a two‐step thermal treatment, and the optimized NiFe‐NiFe2O4/rGOcomposite displays remarkably enhanced lithium storageperformance.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.17986</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0366-6433</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 2021-12, Vol.104 (12), p.6696-6708 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_proquest_journals_2579540793 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Anodes Composite materials controllable synthesis Electrode materials Graphene Intermetallic compounds Iron compounds lithium storage Lithium-ion batteries Mass ratios Metal oxides nanocomposites Nanoparticles Nickel base alloys Nickel compounds Nickel ferrites NiFe‐NiFe2O4 reduced graphene oxide Sheets |
title | NiFe‐NiFe2O4/rGO composites: Controlled preparation and superior lithium storage properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A06%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NiFe%E2%80%90NiFe2O4/rGO%20composites:%20Controlled%20preparation%20and%20superior%20lithium%20storage%20properties&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Chen,%20Huaiyang&rft.date=2021-12&rft.volume=104&rft.issue=12&rft.spage=6696&rft.epage=6708&rft.pages=6696-6708&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.17986&rft_dat=%3Cproquest_wiley%3E2579540793%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579540793&rft_id=info:pmid/&rfr_iscdi=true |