Outer billiards in the spaces of oriented geodesics of the three dimensional space forms
Let \(M_{\kappa }\) be the three-dimensional space form of constant curvature \(\kappa =0,1,-1\), that is, Euclidean space \(\mathbb{R}^{3}\), the sphere \(S^{3} \), or hyperbolic space \(H^{3}\). Let \(S\) be a smooth, closed, strictly convex surface in \(M_{\kappa }\). We define an outer billiard...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-06 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Godoy, Yamile Harrison, Michael Salvai, Marcos |
description | Let \(M_{\kappa }\) be the three-dimensional space form of constant curvature \(\kappa =0,1,-1\), that is, Euclidean space \(\mathbb{R}^{3}\), the sphere \(S^{3} \), or hyperbolic space \(H^{3}\). Let \(S\) be a smooth, closed, strictly convex surface in \(M_{\kappa }\). We define an outer billiard map \(B\) on the four dimensional space \(\mathcal{G}_{\kappa }\) of oriented complete geodesics of \(M_{\kappa }\), for which the billiard table is the subset of \(\mathcal{G}_{\kappa }\) consisting of all oriented geodesics not intersecting \(S\). We show that \(B\) is a diffeomorphism when \(S\) is quadratically convex. For \(\kappa =1,-1\), \(\mathcal{G}_{\kappa }\) has a K\"{a}hler structure associated with the Killing form of \(\operatorname{Iso}(M_{\kappa })\). We prove that \(B\) is a symplectomorphism with respect to its fundamental form and that \(B\) can be obtained as an analogue to the construction of Tabachnikov of the outer billiard in \(\mathbb{R}^{2n}\) defined in terms of the standard symplectic structure. We show that \(B\) does not preserve the fundamental symplectic form on \(\mathcal{G}_{\kappa }\) associated with the cross product on \(M_{\kappa }\), for \(\kappa =0,1,-1\). We initiate the dynamical study of this outer billiard in the hyperbolic case by introducing and discussing a notion of holonomy for periodic points. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2579474265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2579474265</sourcerecordid><originalsourceid>FETCH-proquest_journals_25794742653</originalsourceid><addsrcrecordid>eNqNi0sKwjAUAIMgWLR3eOC6UJOm1bUo7ty4cFdi82pT0qTmpff3ewBXA8PMjCVciE22LThfsJSoz_OclxWXUiTsep4iBrgZa40KmsA4iB0CjapBAt-CDwZdRA139BrJNB_7bmIXEEGbAR0Z75T9XtD6MNCKzVtlCdMfl2x9PFz2p2wM_jEhxbr3U3hNVHNZ7Yqq4KUU_1VPo5pCGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579474265</pqid></control><display><type>article</type><title>Outer billiards in the spaces of oriented geodesics of the three dimensional space forms</title><source>Free E- Journals</source><creator>Godoy, Yamile ; Harrison, Michael ; Salvai, Marcos</creator><creatorcontrib>Godoy, Yamile ; Harrison, Michael ; Salvai, Marcos</creatorcontrib><description>Let \(M_{\kappa }\) be the three-dimensional space form of constant curvature \(\kappa =0,1,-1\), that is, Euclidean space \(\mathbb{R}^{3}\), the sphere \(S^{3} \), or hyperbolic space \(H^{3}\). Let \(S\) be a smooth, closed, strictly convex surface in \(M_{\kappa }\). We define an outer billiard map \(B\) on the four dimensional space \(\mathcal{G}_{\kappa }\) of oriented complete geodesics of \(M_{\kappa }\), for which the billiard table is the subset of \(\mathcal{G}_{\kappa }\) consisting of all oriented geodesics not intersecting \(S\). We show that \(B\) is a diffeomorphism when \(S\) is quadratically convex. For \(\kappa =1,-1\), \(\mathcal{G}_{\kappa }\) has a K\"{a}hler structure associated with the Killing form of \(\operatorname{Iso}(M_{\kappa })\). We prove that \(B\) is a symplectomorphism with respect to its fundamental form and that \(B\) can be obtained as an analogue to the construction of Tabachnikov of the outer billiard in \(\mathbb{R}^{2n}\) defined in terms of the standard symplectic structure. We show that \(B\) does not preserve the fundamental symplectic form on \(\mathcal{G}_{\kappa }\) associated with the cross product on \(M_{\kappa }\), for \(\kappa =0,1,-1\). We initiate the dynamical study of this outer billiard in the hyperbolic case by introducing and discussing a notion of holonomy for periodic points.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Euclidean space ; Geodesy ; Great circles ; Isomorphism</subject><ispartof>arXiv.org, 2023-06</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Godoy, Yamile</creatorcontrib><creatorcontrib>Harrison, Michael</creatorcontrib><creatorcontrib>Salvai, Marcos</creatorcontrib><title>Outer billiards in the spaces of oriented geodesics of the three dimensional space forms</title><title>arXiv.org</title><description>Let \(M_{\kappa }\) be the three-dimensional space form of constant curvature \(\kappa =0,1,-1\), that is, Euclidean space \(\mathbb{R}^{3}\), the sphere \(S^{3} \), or hyperbolic space \(H^{3}\). Let \(S\) be a smooth, closed, strictly convex surface in \(M_{\kappa }\). We define an outer billiard map \(B\) on the four dimensional space \(\mathcal{G}_{\kappa }\) of oriented complete geodesics of \(M_{\kappa }\), for which the billiard table is the subset of \(\mathcal{G}_{\kappa }\) consisting of all oriented geodesics not intersecting \(S\). We show that \(B\) is a diffeomorphism when \(S\) is quadratically convex. For \(\kappa =1,-1\), \(\mathcal{G}_{\kappa }\) has a K\"{a}hler structure associated with the Killing form of \(\operatorname{Iso}(M_{\kappa })\). We prove that \(B\) is a symplectomorphism with respect to its fundamental form and that \(B\) can be obtained as an analogue to the construction of Tabachnikov of the outer billiard in \(\mathbb{R}^{2n}\) defined in terms of the standard symplectic structure. We show that \(B\) does not preserve the fundamental symplectic form on \(\mathcal{G}_{\kappa }\) associated with the cross product on \(M_{\kappa }\), for \(\kappa =0,1,-1\). We initiate the dynamical study of this outer billiard in the hyperbolic case by introducing and discussing a notion of holonomy for periodic points.</description><subject>Euclidean space</subject><subject>Geodesy</subject><subject>Great circles</subject><subject>Isomorphism</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi0sKwjAUAIMgWLR3eOC6UJOm1bUo7ty4cFdi82pT0qTmpff3ewBXA8PMjCVciE22LThfsJSoz_OclxWXUiTsep4iBrgZa40KmsA4iB0CjapBAt-CDwZdRA139BrJNB_7bmIXEEGbAR0Z75T9XtD6MNCKzVtlCdMfl2x9PFz2p2wM_jEhxbr3U3hNVHNZ7Yqq4KUU_1VPo5pCGA</recordid><startdate>20230609</startdate><enddate>20230609</enddate><creator>Godoy, Yamile</creator><creator>Harrison, Michael</creator><creator>Salvai, Marcos</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230609</creationdate><title>Outer billiards in the spaces of oriented geodesics of the three dimensional space forms</title><author>Godoy, Yamile ; Harrison, Michael ; Salvai, Marcos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25794742653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Euclidean space</topic><topic>Geodesy</topic><topic>Great circles</topic><topic>Isomorphism</topic><toplevel>online_resources</toplevel><creatorcontrib>Godoy, Yamile</creatorcontrib><creatorcontrib>Harrison, Michael</creatorcontrib><creatorcontrib>Salvai, Marcos</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Godoy, Yamile</au><au>Harrison, Michael</au><au>Salvai, Marcos</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Outer billiards in the spaces of oriented geodesics of the three dimensional space forms</atitle><jtitle>arXiv.org</jtitle><date>2023-06-09</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Let \(M_{\kappa }\) be the three-dimensional space form of constant curvature \(\kappa =0,1,-1\), that is, Euclidean space \(\mathbb{R}^{3}\), the sphere \(S^{3} \), or hyperbolic space \(H^{3}\). Let \(S\) be a smooth, closed, strictly convex surface in \(M_{\kappa }\). We define an outer billiard map \(B\) on the four dimensional space \(\mathcal{G}_{\kappa }\) of oriented complete geodesics of \(M_{\kappa }\), for which the billiard table is the subset of \(\mathcal{G}_{\kappa }\) consisting of all oriented geodesics not intersecting \(S\). We show that \(B\) is a diffeomorphism when \(S\) is quadratically convex. For \(\kappa =1,-1\), \(\mathcal{G}_{\kappa }\) has a K\"{a}hler structure associated with the Killing form of \(\operatorname{Iso}(M_{\kappa })\). We prove that \(B\) is a symplectomorphism with respect to its fundamental form and that \(B\) can be obtained as an analogue to the construction of Tabachnikov of the outer billiard in \(\mathbb{R}^{2n}\) defined in terms of the standard symplectic structure. We show that \(B\) does not preserve the fundamental symplectic form on \(\mathcal{G}_{\kappa }\) associated with the cross product on \(M_{\kappa }\), for \(\kappa =0,1,-1\). We initiate the dynamical study of this outer billiard in the hyperbolic case by introducing and discussing a notion of holonomy for periodic points.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2579474265 |
source | Free E- Journals |
subjects | Euclidean space Geodesy Great circles Isomorphism |
title | Outer billiards in the spaces of oriented geodesics of the three dimensional space forms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A21%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Outer%20billiards%20in%20the%20spaces%20of%20oriented%20geodesics%20of%20the%20three%20dimensional%20space%20forms&rft.jtitle=arXiv.org&rft.au=Godoy,%20Yamile&rft.date=2023-06-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2579474265%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579474265&rft_id=info:pmid/&rfr_iscdi=true |