Adjoint Sensitivity Analysis for Uncertain Material Parameters in Frequency-Domain 3-D FEM

We present an application of adjoint analysis for efficient sensitivity analysis and estimation of quantities of interest in the presence of uncertain model parameters in 3-D finite element method (FEM) scattering problems. We demonstrate that the adjoint solution may be leveraged to expedite quanti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2021-10, Vol.69 (10), p.6669-6679
Hauptverfasser: Harmon, Jake J., Key, Cam, Estep, Donald, Butler, Troy, Notaros, Branislav M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6679
container_issue 10
container_start_page 6669
container_title IEEE transactions on antennas and propagation
container_volume 69
creator Harmon, Jake J.
Key, Cam
Estep, Donald
Butler, Troy
Notaros, Branislav M.
description We present an application of adjoint analysis for efficient sensitivity analysis and estimation of quantities of interest in the presence of uncertain model parameters in 3-D finite element method (FEM) scattering problems. We demonstrate that the adjoint solution may be leveraged to expedite quantification of uncertainty in the scattering model with extremely high accuracy and vast efficiency improvements in comparison to classic gradient approximation techniques and Monte Carlo (MC) methods. The proposed method is demonstrated for low- and high-dimensional parameter spaces for scattered electric field quantities of interest (QoIs). The results indicate strong agreement with equivalent Monte Carlo simulations for QoI responses and probability densities.
doi_str_mv 10.1109/TAP.2021.3070059
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2579440434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9397286</ieee_id><sourcerecordid>2579440434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-45169d4fcaac75e98a17896703df98bed32969750474b53a5d7ef1dd486872733</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvAc2o-N8lx6YcKLRZsQbyEdDcLKe1uTVJh_70pLZ6Gd3hmmHkAeCR4RAjWL6tyOaKYkhHDEmOhr8CACKEQpZRcgwHGRCFNi69bcBfjNkeuOB-A77Ledr5N8NO10Sf_61MPy9bu-ugjbLoA123lQrK-hQubXPB2B5c22L3LIcLcngX3c3Rt1aNJtz9xDE3gbLq4BzeN3UX3cKlDsJ5NV-M3NP94fR-Xc1RRTRLighS65k1lbSWF08oSqXQhMasbrTauZlQXWgrMJd8IZkUtXUPqmqtCSSoZG4Ln895D6PIhMZltdwz5hWiokJpzzBnPFD5TVehiDK4xh-D3NvSGYHMyaLJBczJoLgbzyNN5xDvn_nHNtKSqYH9kLms8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579440434</pqid></control><display><type>article</type><title>Adjoint Sensitivity Analysis for Uncertain Material Parameters in Frequency-Domain 3-D FEM</title><source>IEEE Electronic Library (IEL)</source><creator>Harmon, Jake J. ; Key, Cam ; Estep, Donald ; Butler, Troy ; Notaros, Branislav M.</creator><creatorcontrib>Harmon, Jake J. ; Key, Cam ; Estep, Donald ; Butler, Troy ; Notaros, Branislav M.</creatorcontrib><description>We present an application of adjoint analysis for efficient sensitivity analysis and estimation of quantities of interest in the presence of uncertain model parameters in 3-D finite element method (FEM) scattering problems. We demonstrate that the adjoint solution may be leveraged to expedite quantification of uncertainty in the scattering model with extremely high accuracy and vast efficiency improvements in comparison to classic gradient approximation techniques and Monte Carlo (MC) methods. The proposed method is demonstrated for low- and high-dimensional parameter spaces for scattered electric field quantities of interest (QoIs). The results indicate strong agreement with equivalent Monte Carlo simulations for QoI responses and probability densities.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2021.3070059</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adjoint methods ; computational electromagnetics (CEM) ; Electric fields ; Estimation ; Finite element analysis ; Finite element method ; finite element method (FEM) ; higher order parameter sampling (HOPS) ; Mathematical models ; Monte Carlo simulation ; Parameter sensitivity ; Parameter uncertainty ; Permittivity ; Scattering ; Sensitivity analysis ; Stochastic processes ; Three dimensional models ; uncertain parameters ; Uncertain systems ; Uncertainty ; uncertainty quantification</subject><ispartof>IEEE transactions on antennas and propagation, 2021-10, Vol.69 (10), p.6669-6679</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-45169d4fcaac75e98a17896703df98bed32969750474b53a5d7ef1dd486872733</citedby><cites>FETCH-LOGICAL-c291t-45169d4fcaac75e98a17896703df98bed32969750474b53a5d7ef1dd486872733</cites><orcidid>0000-0002-7087-3013 ; 0000-0003-0687-2080 ; 0000-0001-9620-6000 ; 0000-0002-5755-961X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9397286$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9397286$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Harmon, Jake J.</creatorcontrib><creatorcontrib>Key, Cam</creatorcontrib><creatorcontrib>Estep, Donald</creatorcontrib><creatorcontrib>Butler, Troy</creatorcontrib><creatorcontrib>Notaros, Branislav M.</creatorcontrib><title>Adjoint Sensitivity Analysis for Uncertain Material Parameters in Frequency-Domain 3-D FEM</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>We present an application of adjoint analysis for efficient sensitivity analysis and estimation of quantities of interest in the presence of uncertain model parameters in 3-D finite element method (FEM) scattering problems. We demonstrate that the adjoint solution may be leveraged to expedite quantification of uncertainty in the scattering model with extremely high accuracy and vast efficiency improvements in comparison to classic gradient approximation techniques and Monte Carlo (MC) methods. The proposed method is demonstrated for low- and high-dimensional parameter spaces for scattered electric field quantities of interest (QoIs). The results indicate strong agreement with equivalent Monte Carlo simulations for QoI responses and probability densities.</description><subject>Adjoint methods</subject><subject>computational electromagnetics (CEM)</subject><subject>Electric fields</subject><subject>Estimation</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>finite element method (FEM)</subject><subject>higher order parameter sampling (HOPS)</subject><subject>Mathematical models</subject><subject>Monte Carlo simulation</subject><subject>Parameter sensitivity</subject><subject>Parameter uncertainty</subject><subject>Permittivity</subject><subject>Scattering</subject><subject>Sensitivity analysis</subject><subject>Stochastic processes</subject><subject>Three dimensional models</subject><subject>uncertain parameters</subject><subject>Uncertain systems</subject><subject>Uncertainty</subject><subject>uncertainty quantification</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvAc2o-N8lx6YcKLRZsQbyEdDcLKe1uTVJh_70pLZ6Gd3hmmHkAeCR4RAjWL6tyOaKYkhHDEmOhr8CACKEQpZRcgwHGRCFNi69bcBfjNkeuOB-A77Ledr5N8NO10Sf_61MPy9bu-ugjbLoA123lQrK-hQubXPB2B5c22L3LIcLcngX3c3Rt1aNJtz9xDE3gbLq4BzeN3UX3cKlDsJ5NV-M3NP94fR-Xc1RRTRLighS65k1lbSWF08oSqXQhMasbrTauZlQXWgrMJd8IZkUtXUPqmqtCSSoZG4Ln895D6PIhMZltdwz5hWiokJpzzBnPFD5TVehiDK4xh-D3NvSGYHMyaLJBczJoLgbzyNN5xDvn_nHNtKSqYH9kLms8</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Harmon, Jake J.</creator><creator>Key, Cam</creator><creator>Estep, Donald</creator><creator>Butler, Troy</creator><creator>Notaros, Branislav M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7087-3013</orcidid><orcidid>https://orcid.org/0000-0003-0687-2080</orcidid><orcidid>https://orcid.org/0000-0001-9620-6000</orcidid><orcidid>https://orcid.org/0000-0002-5755-961X</orcidid></search><sort><creationdate>20211001</creationdate><title>Adjoint Sensitivity Analysis for Uncertain Material Parameters in Frequency-Domain 3-D FEM</title><author>Harmon, Jake J. ; Key, Cam ; Estep, Donald ; Butler, Troy ; Notaros, Branislav M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-45169d4fcaac75e98a17896703df98bed32969750474b53a5d7ef1dd486872733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adjoint methods</topic><topic>computational electromagnetics (CEM)</topic><topic>Electric fields</topic><topic>Estimation</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>finite element method (FEM)</topic><topic>higher order parameter sampling (HOPS)</topic><topic>Mathematical models</topic><topic>Monte Carlo simulation</topic><topic>Parameter sensitivity</topic><topic>Parameter uncertainty</topic><topic>Permittivity</topic><topic>Scattering</topic><topic>Sensitivity analysis</topic><topic>Stochastic processes</topic><topic>Three dimensional models</topic><topic>uncertain parameters</topic><topic>Uncertain systems</topic><topic>Uncertainty</topic><topic>uncertainty quantification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harmon, Jake J.</creatorcontrib><creatorcontrib>Key, Cam</creatorcontrib><creatorcontrib>Estep, Donald</creatorcontrib><creatorcontrib>Butler, Troy</creatorcontrib><creatorcontrib>Notaros, Branislav M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Harmon, Jake J.</au><au>Key, Cam</au><au>Estep, Donald</au><au>Butler, Troy</au><au>Notaros, Branislav M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adjoint Sensitivity Analysis for Uncertain Material Parameters in Frequency-Domain 3-D FEM</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>69</volume><issue>10</issue><spage>6669</spage><epage>6679</epage><pages>6669-6679</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>We present an application of adjoint analysis for efficient sensitivity analysis and estimation of quantities of interest in the presence of uncertain model parameters in 3-D finite element method (FEM) scattering problems. We demonstrate that the adjoint solution may be leveraged to expedite quantification of uncertainty in the scattering model with extremely high accuracy and vast efficiency improvements in comparison to classic gradient approximation techniques and Monte Carlo (MC) methods. The proposed method is demonstrated for low- and high-dimensional parameter spaces for scattered electric field quantities of interest (QoIs). The results indicate strong agreement with equivalent Monte Carlo simulations for QoI responses and probability densities.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2021.3070059</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7087-3013</orcidid><orcidid>https://orcid.org/0000-0003-0687-2080</orcidid><orcidid>https://orcid.org/0000-0001-9620-6000</orcidid><orcidid>https://orcid.org/0000-0002-5755-961X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2021-10, Vol.69 (10), p.6669-6679
issn 0018-926X
1558-2221
language eng
recordid cdi_proquest_journals_2579440434
source IEEE Electronic Library (IEL)
subjects Adjoint methods
computational electromagnetics (CEM)
Electric fields
Estimation
Finite element analysis
Finite element method
finite element method (FEM)
higher order parameter sampling (HOPS)
Mathematical models
Monte Carlo simulation
Parameter sensitivity
Parameter uncertainty
Permittivity
Scattering
Sensitivity analysis
Stochastic processes
Three dimensional models
uncertain parameters
Uncertain systems
Uncertainty
uncertainty quantification
title Adjoint Sensitivity Analysis for Uncertain Material Parameters in Frequency-Domain 3-D FEM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T11%3A21%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adjoint%20Sensitivity%20Analysis%20for%20Uncertain%20Material%20Parameters%20in%20Frequency-Domain%203-D%20FEM&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Harmon,%20Jake%20J.&rft.date=2021-10-01&rft.volume=69&rft.issue=10&rft.spage=6669&rft.epage=6679&rft.pages=6669-6679&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2021.3070059&rft_dat=%3Cproquest_RIE%3E2579440434%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579440434&rft_id=info:pmid/&rft_ieee_id=9397286&rfr_iscdi=true