Adjoint Sensitivity Analysis for Uncertain Material Parameters in Frequency-Domain 3-D FEM
We present an application of adjoint analysis for efficient sensitivity analysis and estimation of quantities of interest in the presence of uncertain model parameters in 3-D finite element method (FEM) scattering problems. We demonstrate that the adjoint solution may be leveraged to expedite quanti...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2021-10, Vol.69 (10), p.6669-6679 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6679 |
---|---|
container_issue | 10 |
container_start_page | 6669 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 69 |
creator | Harmon, Jake J. Key, Cam Estep, Donald Butler, Troy Notaros, Branislav M. |
description | We present an application of adjoint analysis for efficient sensitivity analysis and estimation of quantities of interest in the presence of uncertain model parameters in 3-D finite element method (FEM) scattering problems. We demonstrate that the adjoint solution may be leveraged to expedite quantification of uncertainty in the scattering model with extremely high accuracy and vast efficiency improvements in comparison to classic gradient approximation techniques and Monte Carlo (MC) methods. The proposed method is demonstrated for low- and high-dimensional parameter spaces for scattered electric field quantities of interest (QoIs). The results indicate strong agreement with equivalent Monte Carlo simulations for QoI responses and probability densities. |
doi_str_mv | 10.1109/TAP.2021.3070059 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2579440434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9397286</ieee_id><sourcerecordid>2579440434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-45169d4fcaac75e98a17896703df98bed32969750474b53a5d7ef1dd486872733</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvAc2o-N8lx6YcKLRZsQbyEdDcLKe1uTVJh_70pLZ6Gd3hmmHkAeCR4RAjWL6tyOaKYkhHDEmOhr8CACKEQpZRcgwHGRCFNi69bcBfjNkeuOB-A77Ledr5N8NO10Sf_61MPy9bu-ugjbLoA123lQrK-hQubXPB2B5c22L3LIcLcngX3c3Rt1aNJtz9xDE3gbLq4BzeN3UX3cKlDsJ5NV-M3NP94fR-Xc1RRTRLighS65k1lbSWF08oSqXQhMasbrTauZlQXWgrMJd8IZkUtXUPqmqtCSSoZG4Ln895D6PIhMZltdwz5hWiokJpzzBnPFD5TVehiDK4xh-D3NvSGYHMyaLJBczJoLgbzyNN5xDvn_nHNtKSqYH9kLms8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579440434</pqid></control><display><type>article</type><title>Adjoint Sensitivity Analysis for Uncertain Material Parameters in Frequency-Domain 3-D FEM</title><source>IEEE Electronic Library (IEL)</source><creator>Harmon, Jake J. ; Key, Cam ; Estep, Donald ; Butler, Troy ; Notaros, Branislav M.</creator><creatorcontrib>Harmon, Jake J. ; Key, Cam ; Estep, Donald ; Butler, Troy ; Notaros, Branislav M.</creatorcontrib><description>We present an application of adjoint analysis for efficient sensitivity analysis and estimation of quantities of interest in the presence of uncertain model parameters in 3-D finite element method (FEM) scattering problems. We demonstrate that the adjoint solution may be leveraged to expedite quantification of uncertainty in the scattering model with extremely high accuracy and vast efficiency improvements in comparison to classic gradient approximation techniques and Monte Carlo (MC) methods. The proposed method is demonstrated for low- and high-dimensional parameter spaces for scattered electric field quantities of interest (QoIs). The results indicate strong agreement with equivalent Monte Carlo simulations for QoI responses and probability densities.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2021.3070059</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adjoint methods ; computational electromagnetics (CEM) ; Electric fields ; Estimation ; Finite element analysis ; Finite element method ; finite element method (FEM) ; higher order parameter sampling (HOPS) ; Mathematical models ; Monte Carlo simulation ; Parameter sensitivity ; Parameter uncertainty ; Permittivity ; Scattering ; Sensitivity analysis ; Stochastic processes ; Three dimensional models ; uncertain parameters ; Uncertain systems ; Uncertainty ; uncertainty quantification</subject><ispartof>IEEE transactions on antennas and propagation, 2021-10, Vol.69 (10), p.6669-6679</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-45169d4fcaac75e98a17896703df98bed32969750474b53a5d7ef1dd486872733</citedby><cites>FETCH-LOGICAL-c291t-45169d4fcaac75e98a17896703df98bed32969750474b53a5d7ef1dd486872733</cites><orcidid>0000-0002-7087-3013 ; 0000-0003-0687-2080 ; 0000-0001-9620-6000 ; 0000-0002-5755-961X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9397286$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9397286$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Harmon, Jake J.</creatorcontrib><creatorcontrib>Key, Cam</creatorcontrib><creatorcontrib>Estep, Donald</creatorcontrib><creatorcontrib>Butler, Troy</creatorcontrib><creatorcontrib>Notaros, Branislav M.</creatorcontrib><title>Adjoint Sensitivity Analysis for Uncertain Material Parameters in Frequency-Domain 3-D FEM</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>We present an application of adjoint analysis for efficient sensitivity analysis and estimation of quantities of interest in the presence of uncertain model parameters in 3-D finite element method (FEM) scattering problems. We demonstrate that the adjoint solution may be leveraged to expedite quantification of uncertainty in the scattering model with extremely high accuracy and vast efficiency improvements in comparison to classic gradient approximation techniques and Monte Carlo (MC) methods. The proposed method is demonstrated for low- and high-dimensional parameter spaces for scattered electric field quantities of interest (QoIs). The results indicate strong agreement with equivalent Monte Carlo simulations for QoI responses and probability densities.</description><subject>Adjoint methods</subject><subject>computational electromagnetics (CEM)</subject><subject>Electric fields</subject><subject>Estimation</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>finite element method (FEM)</subject><subject>higher order parameter sampling (HOPS)</subject><subject>Mathematical models</subject><subject>Monte Carlo simulation</subject><subject>Parameter sensitivity</subject><subject>Parameter uncertainty</subject><subject>Permittivity</subject><subject>Scattering</subject><subject>Sensitivity analysis</subject><subject>Stochastic processes</subject><subject>Three dimensional models</subject><subject>uncertain parameters</subject><subject>Uncertain systems</subject><subject>Uncertainty</subject><subject>uncertainty quantification</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvAc2o-N8lx6YcKLRZsQbyEdDcLKe1uTVJh_70pLZ6Gd3hmmHkAeCR4RAjWL6tyOaKYkhHDEmOhr8CACKEQpZRcgwHGRCFNi69bcBfjNkeuOB-A77Ledr5N8NO10Sf_61MPy9bu-ugjbLoA123lQrK-hQubXPB2B5c22L3LIcLcngX3c3Rt1aNJtz9xDE3gbLq4BzeN3UX3cKlDsJ5NV-M3NP94fR-Xc1RRTRLighS65k1lbSWF08oSqXQhMasbrTauZlQXWgrMJd8IZkUtXUPqmqtCSSoZG4Ln895D6PIhMZltdwz5hWiokJpzzBnPFD5TVehiDK4xh-D3NvSGYHMyaLJBczJoLgbzyNN5xDvn_nHNtKSqYH9kLms8</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Harmon, Jake J.</creator><creator>Key, Cam</creator><creator>Estep, Donald</creator><creator>Butler, Troy</creator><creator>Notaros, Branislav M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7087-3013</orcidid><orcidid>https://orcid.org/0000-0003-0687-2080</orcidid><orcidid>https://orcid.org/0000-0001-9620-6000</orcidid><orcidid>https://orcid.org/0000-0002-5755-961X</orcidid></search><sort><creationdate>20211001</creationdate><title>Adjoint Sensitivity Analysis for Uncertain Material Parameters in Frequency-Domain 3-D FEM</title><author>Harmon, Jake J. ; Key, Cam ; Estep, Donald ; Butler, Troy ; Notaros, Branislav M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-45169d4fcaac75e98a17896703df98bed32969750474b53a5d7ef1dd486872733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adjoint methods</topic><topic>computational electromagnetics (CEM)</topic><topic>Electric fields</topic><topic>Estimation</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>finite element method (FEM)</topic><topic>higher order parameter sampling (HOPS)</topic><topic>Mathematical models</topic><topic>Monte Carlo simulation</topic><topic>Parameter sensitivity</topic><topic>Parameter uncertainty</topic><topic>Permittivity</topic><topic>Scattering</topic><topic>Sensitivity analysis</topic><topic>Stochastic processes</topic><topic>Three dimensional models</topic><topic>uncertain parameters</topic><topic>Uncertain systems</topic><topic>Uncertainty</topic><topic>uncertainty quantification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harmon, Jake J.</creatorcontrib><creatorcontrib>Key, Cam</creatorcontrib><creatorcontrib>Estep, Donald</creatorcontrib><creatorcontrib>Butler, Troy</creatorcontrib><creatorcontrib>Notaros, Branislav M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Harmon, Jake J.</au><au>Key, Cam</au><au>Estep, Donald</au><au>Butler, Troy</au><au>Notaros, Branislav M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adjoint Sensitivity Analysis for Uncertain Material Parameters in Frequency-Domain 3-D FEM</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>69</volume><issue>10</issue><spage>6669</spage><epage>6679</epage><pages>6669-6679</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>We present an application of adjoint analysis for efficient sensitivity analysis and estimation of quantities of interest in the presence of uncertain model parameters in 3-D finite element method (FEM) scattering problems. We demonstrate that the adjoint solution may be leveraged to expedite quantification of uncertainty in the scattering model with extremely high accuracy and vast efficiency improvements in comparison to classic gradient approximation techniques and Monte Carlo (MC) methods. The proposed method is demonstrated for low- and high-dimensional parameter spaces for scattered electric field quantities of interest (QoIs). The results indicate strong agreement with equivalent Monte Carlo simulations for QoI responses and probability densities.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2021.3070059</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7087-3013</orcidid><orcidid>https://orcid.org/0000-0003-0687-2080</orcidid><orcidid>https://orcid.org/0000-0001-9620-6000</orcidid><orcidid>https://orcid.org/0000-0002-5755-961X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2021-10, Vol.69 (10), p.6669-6679 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_proquest_journals_2579440434 |
source | IEEE Electronic Library (IEL) |
subjects | Adjoint methods computational electromagnetics (CEM) Electric fields Estimation Finite element analysis Finite element method finite element method (FEM) higher order parameter sampling (HOPS) Mathematical models Monte Carlo simulation Parameter sensitivity Parameter uncertainty Permittivity Scattering Sensitivity analysis Stochastic processes Three dimensional models uncertain parameters Uncertain systems Uncertainty uncertainty quantification |
title | Adjoint Sensitivity Analysis for Uncertain Material Parameters in Frequency-Domain 3-D FEM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T11%3A21%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adjoint%20Sensitivity%20Analysis%20for%20Uncertain%20Material%20Parameters%20in%20Frequency-Domain%203-D%20FEM&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Harmon,%20Jake%20J.&rft.date=2021-10-01&rft.volume=69&rft.issue=10&rft.spage=6669&rft.epage=6679&rft.pages=6669-6679&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2021.3070059&rft_dat=%3Cproquest_RIE%3E2579440434%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579440434&rft_id=info:pmid/&rft_ieee_id=9397286&rfr_iscdi=true |