Emulating UAV Motion by Utilizing Robotic Arm for mmWave Wireless Channel Characterization

In this article, millimeter-wave (mmWave) wireless channel characteristics (Doppler spread and path loss modeling) for unmanned aerial vehicle (UAV)-assisted communication is analyzed and studied by emulating the real UAV motion using a robotic arm. The motion considers the actual turbulence caused...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2021-10, Vol.69 (10), p.6691-6701
Hauptverfasser: Kachroo, Amit, Thornton, Collin A., Sarker, Md. Arifur Rahman, Choi, Wooyeol, Bai, He, Song, Ickhyun, O'Hara, John F., Ekin, Sabit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6701
container_issue 10
container_start_page 6691
container_title IEEE transactions on antennas and propagation
container_volume 69
creator Kachroo, Amit
Thornton, Collin A.
Sarker, Md. Arifur Rahman
Choi, Wooyeol
Bai, He
Song, Ickhyun
O'Hara, John F.
Ekin, Sabit
description In this article, millimeter-wave (mmWave) wireless channel characteristics (Doppler spread and path loss modeling) for unmanned aerial vehicle (UAV)-assisted communication is analyzed and studied by emulating the real UAV motion using a robotic arm. The motion considers the actual turbulence caused by the wind gusts to the UAV in the atmosphere, which is statistically modeled by the widely used Dryden wind model. The frequency under consideration is 28 GHz in an anechoic chamber setting. A total of 11 distance points from 3.5 to 23.5 ft in increments of 2 ft were considered in this experiment. At each distance point, three samples of data were collected for better inference purposes. In this emulated environment, it was found out that the average Doppler spread at these different distances was around −20 and +20 Hz at the noise floor of −60 dB. On the other hand, the path loss exponent was found to be 1.843. This study presents and lays out a novel framework of emulating UAV motion for mmWave communication systems, which will pave the way out for future design and implementation of next-generation UAV-assisted wireless communication systems.
doi_str_mv 10.1109/TAP.2021.3069484
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2579440288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9395358</ieee_id><sourcerecordid>2579440288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-321537ca523bab34ecb0642e85e579a7e85364fcad369913d010fad0aa3789583</originalsourceid><addsrcrecordid>eNo9UFtLwzAYDaLgnL4LvgR8bk3yJW3zWMa8wESRzYkvIe1SzehlJp2w_XpTNnw633c4FzgIXVMSU0rk3Tx_jRlhNAaSSJ7xEzSiQmQRY4yeohEhNIskSz7O0YX36_AGDR-hz2mzrXVv2y-8yN_xc9fbrsXFDi96W9v9wL91RWBLnLsGV53DTbPUvwYvrTO18R5PvnXbmnpAp8veOLvXQ8olOqt07c3VEcdocT-dTx6j2cvD0ySfRSUA9BEwKiAttWBQ6AK4KQuScGYyYUQqdRoOSHhV6hUkUlJYEUoqvSJaQ5pJkcEY3R5yN6772Rrfq3W3dW2oVCwkcE5YNqjIQVW6zntnKrVxttFupyhRw4IqLKiGBdVxwWC5OVisMeZfLkEKCLV_uO1sAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579440288</pqid></control><display><type>article</type><title>Emulating UAV Motion by Utilizing Robotic Arm for mmWave Wireless Channel Characterization</title><source>IEEE Electronic Library (IEL)</source><creator>Kachroo, Amit ; Thornton, Collin A. ; Sarker, Md. Arifur Rahman ; Choi, Wooyeol ; Bai, He ; Song, Ickhyun ; O'Hara, John F. ; Ekin, Sabit</creator><creatorcontrib>Kachroo, Amit ; Thornton, Collin A. ; Sarker, Md. Arifur Rahman ; Choi, Wooyeol ; Bai, He ; Song, Ickhyun ; O'Hara, John F. ; Ekin, Sabit</creatorcontrib><description>In this article, millimeter-wave (mmWave) wireless channel characteristics (Doppler spread and path loss modeling) for unmanned aerial vehicle (UAV)-assisted communication is analyzed and studied by emulating the real UAV motion using a robotic arm. The motion considers the actual turbulence caused by the wind gusts to the UAV in the atmosphere, which is statistically modeled by the widely used Dryden wind model. The frequency under consideration is 28 GHz in an anechoic chamber setting. A total of 11 distance points from 3.5 to 23.5 ft in increments of 2 ft were considered in this experiment. At each distance point, three samples of data were collected for better inference purposes. In this emulated environment, it was found out that the average Doppler spread at these different distances was around −20 and +20 Hz at the noise floor of −60 dB. On the other hand, the path loss exponent was found to be 1.843. This study presents and lays out a novel framework of emulating UAV motion for mmWave communication systems, which will pave the way out for future design and implementation of next-generation UAV-assisted wireless communication systems.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2021.3069484</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical models ; Anechoic chambers ; Atmospheric modeling ; Atmospheric models ; Channel emulation ; Communication ; Doppler ; Doppler effect ; Dryden wind model ; Gusts ; Manipulators ; Millimeter wave communication ; Millimeter waves ; millimeter-wave (mmWave) ; Noise levels ; path loss ; Robot arms ; Robots ; Statistical methods ; unmanned aerial vehicle (UAV) ; Unmanned aerial vehicles ; Wireless communication ; Wireless communication systems</subject><ispartof>IEEE transactions on antennas and propagation, 2021-10, Vol.69 (10), p.6691-6701</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-321537ca523bab34ecb0642e85e579a7e85364fcad369913d010fad0aa3789583</citedby><cites>FETCH-LOGICAL-c333t-321537ca523bab34ecb0642e85e579a7e85364fcad369913d010fad0aa3789583</cites><orcidid>0000-0002-7669-9853 ; 0000-0002-6688-7084 ; 0000-0002-4247-0698 ; 0000-0001-9268-1541 ; 0000-0002-6248-0674 ; 0000-0002-9957-7752 ; 0000-0001-8193-1867 ; 0000-0001-6225-0986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9395358$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9395358$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kachroo, Amit</creatorcontrib><creatorcontrib>Thornton, Collin A.</creatorcontrib><creatorcontrib>Sarker, Md. Arifur Rahman</creatorcontrib><creatorcontrib>Choi, Wooyeol</creatorcontrib><creatorcontrib>Bai, He</creatorcontrib><creatorcontrib>Song, Ickhyun</creatorcontrib><creatorcontrib>O'Hara, John F.</creatorcontrib><creatorcontrib>Ekin, Sabit</creatorcontrib><title>Emulating UAV Motion by Utilizing Robotic Arm for mmWave Wireless Channel Characterization</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>In this article, millimeter-wave (mmWave) wireless channel characteristics (Doppler spread and path loss modeling) for unmanned aerial vehicle (UAV)-assisted communication is analyzed and studied by emulating the real UAV motion using a robotic arm. The motion considers the actual turbulence caused by the wind gusts to the UAV in the atmosphere, which is statistically modeled by the widely used Dryden wind model. The frequency under consideration is 28 GHz in an anechoic chamber setting. A total of 11 distance points from 3.5 to 23.5 ft in increments of 2 ft were considered in this experiment. At each distance point, three samples of data were collected for better inference purposes. In this emulated environment, it was found out that the average Doppler spread at these different distances was around −20 and +20 Hz at the noise floor of −60 dB. On the other hand, the path loss exponent was found to be 1.843. This study presents and lays out a novel framework of emulating UAV motion for mmWave communication systems, which will pave the way out for future design and implementation of next-generation UAV-assisted wireless communication systems.</description><subject>Analytical models</subject><subject>Anechoic chambers</subject><subject>Atmospheric modeling</subject><subject>Atmospheric models</subject><subject>Channel emulation</subject><subject>Communication</subject><subject>Doppler</subject><subject>Doppler effect</subject><subject>Dryden wind model</subject><subject>Gusts</subject><subject>Manipulators</subject><subject>Millimeter wave communication</subject><subject>Millimeter waves</subject><subject>millimeter-wave (mmWave)</subject><subject>Noise levels</subject><subject>path loss</subject><subject>Robot arms</subject><subject>Robots</subject><subject>Statistical methods</subject><subject>unmanned aerial vehicle (UAV)</subject><subject>Unmanned aerial vehicles</subject><subject>Wireless communication</subject><subject>Wireless communication systems</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UFtLwzAYDaLgnL4LvgR8bk3yJW3zWMa8wESRzYkvIe1SzehlJp2w_XpTNnw633c4FzgIXVMSU0rk3Tx_jRlhNAaSSJ7xEzSiQmQRY4yeohEhNIskSz7O0YX36_AGDR-hz2mzrXVv2y-8yN_xc9fbrsXFDi96W9v9wL91RWBLnLsGV53DTbPUvwYvrTO18R5PvnXbmnpAp8veOLvXQ8olOqt07c3VEcdocT-dTx6j2cvD0ySfRSUA9BEwKiAttWBQ6AK4KQuScGYyYUQqdRoOSHhV6hUkUlJYEUoqvSJaQ5pJkcEY3R5yN6772Rrfq3W3dW2oVCwkcE5YNqjIQVW6zntnKrVxttFupyhRw4IqLKiGBdVxwWC5OVisMeZfLkEKCLV_uO1sAQ</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Kachroo, Amit</creator><creator>Thornton, Collin A.</creator><creator>Sarker, Md. Arifur Rahman</creator><creator>Choi, Wooyeol</creator><creator>Bai, He</creator><creator>Song, Ickhyun</creator><creator>O'Hara, John F.</creator><creator>Ekin, Sabit</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7669-9853</orcidid><orcidid>https://orcid.org/0000-0002-6688-7084</orcidid><orcidid>https://orcid.org/0000-0002-4247-0698</orcidid><orcidid>https://orcid.org/0000-0001-9268-1541</orcidid><orcidid>https://orcid.org/0000-0002-6248-0674</orcidid><orcidid>https://orcid.org/0000-0002-9957-7752</orcidid><orcidid>https://orcid.org/0000-0001-8193-1867</orcidid><orcidid>https://orcid.org/0000-0001-6225-0986</orcidid></search><sort><creationdate>20211001</creationdate><title>Emulating UAV Motion by Utilizing Robotic Arm for mmWave Wireless Channel Characterization</title><author>Kachroo, Amit ; Thornton, Collin A. ; Sarker, Md. Arifur Rahman ; Choi, Wooyeol ; Bai, He ; Song, Ickhyun ; O'Hara, John F. ; Ekin, Sabit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-321537ca523bab34ecb0642e85e579a7e85364fcad369913d010fad0aa3789583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analytical models</topic><topic>Anechoic chambers</topic><topic>Atmospheric modeling</topic><topic>Atmospheric models</topic><topic>Channel emulation</topic><topic>Communication</topic><topic>Doppler</topic><topic>Doppler effect</topic><topic>Dryden wind model</topic><topic>Gusts</topic><topic>Manipulators</topic><topic>Millimeter wave communication</topic><topic>Millimeter waves</topic><topic>millimeter-wave (mmWave)</topic><topic>Noise levels</topic><topic>path loss</topic><topic>Robot arms</topic><topic>Robots</topic><topic>Statistical methods</topic><topic>unmanned aerial vehicle (UAV)</topic><topic>Unmanned aerial vehicles</topic><topic>Wireless communication</topic><topic>Wireless communication systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kachroo, Amit</creatorcontrib><creatorcontrib>Thornton, Collin A.</creatorcontrib><creatorcontrib>Sarker, Md. Arifur Rahman</creatorcontrib><creatorcontrib>Choi, Wooyeol</creatorcontrib><creatorcontrib>Bai, He</creatorcontrib><creatorcontrib>Song, Ickhyun</creatorcontrib><creatorcontrib>O'Hara, John F.</creatorcontrib><creatorcontrib>Ekin, Sabit</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kachroo, Amit</au><au>Thornton, Collin A.</au><au>Sarker, Md. Arifur Rahman</au><au>Choi, Wooyeol</au><au>Bai, He</au><au>Song, Ickhyun</au><au>O'Hara, John F.</au><au>Ekin, Sabit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emulating UAV Motion by Utilizing Robotic Arm for mmWave Wireless Channel Characterization</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>69</volume><issue>10</issue><spage>6691</spage><epage>6701</epage><pages>6691-6701</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>In this article, millimeter-wave (mmWave) wireless channel characteristics (Doppler spread and path loss modeling) for unmanned aerial vehicle (UAV)-assisted communication is analyzed and studied by emulating the real UAV motion using a robotic arm. The motion considers the actual turbulence caused by the wind gusts to the UAV in the atmosphere, which is statistically modeled by the widely used Dryden wind model. The frequency under consideration is 28 GHz in an anechoic chamber setting. A total of 11 distance points from 3.5 to 23.5 ft in increments of 2 ft were considered in this experiment. At each distance point, three samples of data were collected for better inference purposes. In this emulated environment, it was found out that the average Doppler spread at these different distances was around −20 and +20 Hz at the noise floor of −60 dB. On the other hand, the path loss exponent was found to be 1.843. This study presents and lays out a novel framework of emulating UAV motion for mmWave communication systems, which will pave the way out for future design and implementation of next-generation UAV-assisted wireless communication systems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2021.3069484</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7669-9853</orcidid><orcidid>https://orcid.org/0000-0002-6688-7084</orcidid><orcidid>https://orcid.org/0000-0002-4247-0698</orcidid><orcidid>https://orcid.org/0000-0001-9268-1541</orcidid><orcidid>https://orcid.org/0000-0002-6248-0674</orcidid><orcidid>https://orcid.org/0000-0002-9957-7752</orcidid><orcidid>https://orcid.org/0000-0001-8193-1867</orcidid><orcidid>https://orcid.org/0000-0001-6225-0986</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2021-10, Vol.69 (10), p.6691-6701
issn 0018-926X
1558-2221
language eng
recordid cdi_proquest_journals_2579440288
source IEEE Electronic Library (IEL)
subjects Analytical models
Anechoic chambers
Atmospheric modeling
Atmospheric models
Channel emulation
Communication
Doppler
Doppler effect
Dryden wind model
Gusts
Manipulators
Millimeter wave communication
Millimeter waves
millimeter-wave (mmWave)
Noise levels
path loss
Robot arms
Robots
Statistical methods
unmanned aerial vehicle (UAV)
Unmanned aerial vehicles
Wireless communication
Wireless communication systems
title Emulating UAV Motion by Utilizing Robotic Arm for mmWave Wireless Channel Characterization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A28%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emulating%20UAV%20Motion%20by%20Utilizing%20Robotic%20Arm%20for%20mmWave%20Wireless%20Channel%20Characterization&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Kachroo,%20Amit&rft.date=2021-10-01&rft.volume=69&rft.issue=10&rft.spage=6691&rft.epage=6701&rft.pages=6691-6701&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2021.3069484&rft_dat=%3Cproquest_RIE%3E2579440288%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579440288&rft_id=info:pmid/&rft_ieee_id=9395358&rfr_iscdi=true