Comparison of metaheuristic optimization algorithms for solving constrained mechanical design optimization problems
•Nine recent meta-heuristics are used to optimize eight mechanical design problems.•Theoretical and numerical comparisons are extensively investigated.•The results show the merits of the methods used in solving the case studies. Determining the solution for real mechanical design problems is a chall...
Gespeichert in:
Veröffentlicht in: | Expert systems with applications 2021-11, Vol.183, p.115351, Article 115351 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 115351 |
container_title | Expert systems with applications |
container_volume | 183 |
creator | Gupta, Shubham Abderazek, Hammoudi Yıldız, Betül Sultan Yildiz, Ali Riza Mirjalili, Seyedali Sait, Sadiq M. |
description | •Nine recent meta-heuristics are used to optimize eight mechanical design problems.•Theoretical and numerical comparisons are extensively investigated.•The results show the merits of the methods used in solving the case studies.
Determining the solution for real mechanical design problems is a challenging task when using the newly developed and efficient swarm intelligence algorithms. There are so many difficulties to be addressed, including but not limited to mixed decision variables, diverse constraints, inherent errors, conflicting objectives, and numerous locally optimal solutions. This work analyzes the behavior of nine metaheuristic algorithms, namely, salp swarm algorithm (SSA), multi-verse optimizer (MVO), moth-flame optimizer (MFO), atom search optimization (ASO), ecogeography-based optimization (EBO), queuing search algorithm (QSA), equilibrium optimizer (EO), evolutionary strategy (ES) and hybrid self-adaptive orthogonal genetic algorithm (HSOGA). The efficiency of these algorithms is evaluated on eight mechanical design problems using the solution quality and convergence analysis, which verifies the wide applicability of these algorithms to real-world application problems. |
doi_str_mv | 10.1016/j.eswa.2021.115351 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2579414007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S095741742100779X</els_id><sourcerecordid>2579414007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-40302ae69148fc747a9818a3ac1083eedbd2203a5d47dd6fdc73aed9973d2fc63</originalsourceid><addsrcrecordid>eNp9kEtLxDAQx4MouK5-AU8Fz615tWnBiyy-YMGLnkM2me6mtE1Nsiv66c1SL148DcP8H8MPoWuCC4JJddsVED5VQTElBSElK8kJWpBasLwSDTtFC9yUIudE8HN0EUKHMREYiwUKKzdMytvgxsy12QBR7WCf9mh15qZoB_utok1X1W-dt3E3hKx1PguuP9hxm2k3huiVHcEkt96p0WrVZwaC3Y5_EybvNj0M4RKdtaoPcPU7l-j98eFt9ZyvX59eVvfrXLOGx5xjhqmCqiG8brXgQjU1qRVTmuCaAZiNoRQzVRoujKlaowVTYJpGMENbXbEluplzU_HHHkKUndv7MVVKWoqGE54QJBWdVdq7EDy0cvJ2UP5LEiyPcGUnj3DlEa6c4SbT3WyC9P_BgpdBWxg1GOtBR2mc_c_-A73nhoU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579414007</pqid></control><display><type>article</type><title>Comparison of metaheuristic optimization algorithms for solving constrained mechanical design optimization problems</title><source>Elsevier ScienceDirect Journals</source><creator>Gupta, Shubham ; Abderazek, Hammoudi ; Yıldız, Betül Sultan ; Yildiz, Ali Riza ; Mirjalili, Seyedali ; Sait, Sadiq M.</creator><creatorcontrib>Gupta, Shubham ; Abderazek, Hammoudi ; Yıldız, Betül Sultan ; Yildiz, Ali Riza ; Mirjalili, Seyedali ; Sait, Sadiq M.</creatorcontrib><description>•Nine recent meta-heuristics are used to optimize eight mechanical design problems.•Theoretical and numerical comparisons are extensively investigated.•The results show the merits of the methods used in solving the case studies.
Determining the solution for real mechanical design problems is a challenging task when using the newly developed and efficient swarm intelligence algorithms. There are so many difficulties to be addressed, including but not limited to mixed decision variables, diverse constraints, inherent errors, conflicting objectives, and numerous locally optimal solutions. This work analyzes the behavior of nine metaheuristic algorithms, namely, salp swarm algorithm (SSA), multi-verse optimizer (MVO), moth-flame optimizer (MFO), atom search optimization (ASO), ecogeography-based optimization (EBO), queuing search algorithm (QSA), equilibrium optimizer (EO), evolutionary strategy (ES) and hybrid self-adaptive orthogonal genetic algorithm (HSOGA). The efficiency of these algorithms is evaluated on eight mechanical design problems using the solution quality and convergence analysis, which verifies the wide applicability of these algorithms to real-world application problems.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2021.115351</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Adaptive algorithms ; Algorithms ; Constraints ; Design optimization ; Evolutionary algorithms ; Exploitation ; Exploration ; Genetic algorithms ; Heuristic methods ; Mechanical design problems ; Metaheuristic algorithms ; Optimization ; Search algorithms ; Swarm intelligence</subject><ispartof>Expert systems with applications, 2021-11, Vol.183, p.115351, Article 115351</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 30, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-40302ae69148fc747a9818a3ac1083eedbd2203a5d47dd6fdc73aed9973d2fc63</citedby><cites>FETCH-LOGICAL-c394t-40302ae69148fc747a9818a3ac1083eedbd2203a5d47dd6fdc73aed9973d2fc63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S095741742100779X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Gupta, Shubham</creatorcontrib><creatorcontrib>Abderazek, Hammoudi</creatorcontrib><creatorcontrib>Yıldız, Betül Sultan</creatorcontrib><creatorcontrib>Yildiz, Ali Riza</creatorcontrib><creatorcontrib>Mirjalili, Seyedali</creatorcontrib><creatorcontrib>Sait, Sadiq M.</creatorcontrib><title>Comparison of metaheuristic optimization algorithms for solving constrained mechanical design optimization problems</title><title>Expert systems with applications</title><description>•Nine recent meta-heuristics are used to optimize eight mechanical design problems.•Theoretical and numerical comparisons are extensively investigated.•The results show the merits of the methods used in solving the case studies.
Determining the solution for real mechanical design problems is a challenging task when using the newly developed and efficient swarm intelligence algorithms. There are so many difficulties to be addressed, including but not limited to mixed decision variables, diverse constraints, inherent errors, conflicting objectives, and numerous locally optimal solutions. This work analyzes the behavior of nine metaheuristic algorithms, namely, salp swarm algorithm (SSA), multi-verse optimizer (MVO), moth-flame optimizer (MFO), atom search optimization (ASO), ecogeography-based optimization (EBO), queuing search algorithm (QSA), equilibrium optimizer (EO), evolutionary strategy (ES) and hybrid self-adaptive orthogonal genetic algorithm (HSOGA). The efficiency of these algorithms is evaluated on eight mechanical design problems using the solution quality and convergence analysis, which verifies the wide applicability of these algorithms to real-world application problems.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Constraints</subject><subject>Design optimization</subject><subject>Evolutionary algorithms</subject><subject>Exploitation</subject><subject>Exploration</subject><subject>Genetic algorithms</subject><subject>Heuristic methods</subject><subject>Mechanical design problems</subject><subject>Metaheuristic algorithms</subject><subject>Optimization</subject><subject>Search algorithms</subject><subject>Swarm intelligence</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAQx4MouK5-AU8Fz615tWnBiyy-YMGLnkM2me6mtE1Nsiv66c1SL148DcP8H8MPoWuCC4JJddsVED5VQTElBSElK8kJWpBasLwSDTtFC9yUIudE8HN0EUKHMREYiwUKKzdMytvgxsy12QBR7WCf9mh15qZoB_utok1X1W-dt3E3hKx1PguuP9hxm2k3huiVHcEkt96p0WrVZwaC3Y5_EybvNj0M4RKdtaoPcPU7l-j98eFt9ZyvX59eVvfrXLOGx5xjhqmCqiG8brXgQjU1qRVTmuCaAZiNoRQzVRoujKlaowVTYJpGMENbXbEluplzU_HHHkKUndv7MVVKWoqGE54QJBWdVdq7EDy0cvJ2UP5LEiyPcGUnj3DlEa6c4SbT3WyC9P_BgpdBWxg1GOtBR2mc_c_-A73nhoU</recordid><startdate>20211130</startdate><enddate>20211130</enddate><creator>Gupta, Shubham</creator><creator>Abderazek, Hammoudi</creator><creator>Yıldız, Betül Sultan</creator><creator>Yildiz, Ali Riza</creator><creator>Mirjalili, Seyedali</creator><creator>Sait, Sadiq M.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20211130</creationdate><title>Comparison of metaheuristic optimization algorithms for solving constrained mechanical design optimization problems</title><author>Gupta, Shubham ; Abderazek, Hammoudi ; Yıldız, Betül Sultan ; Yildiz, Ali Riza ; Mirjalili, Seyedali ; Sait, Sadiq M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-40302ae69148fc747a9818a3ac1083eedbd2203a5d47dd6fdc73aed9973d2fc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Constraints</topic><topic>Design optimization</topic><topic>Evolutionary algorithms</topic><topic>Exploitation</topic><topic>Exploration</topic><topic>Genetic algorithms</topic><topic>Heuristic methods</topic><topic>Mechanical design problems</topic><topic>Metaheuristic algorithms</topic><topic>Optimization</topic><topic>Search algorithms</topic><topic>Swarm intelligence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Shubham</creatorcontrib><creatorcontrib>Abderazek, Hammoudi</creatorcontrib><creatorcontrib>Yıldız, Betül Sultan</creatorcontrib><creatorcontrib>Yildiz, Ali Riza</creatorcontrib><creatorcontrib>Mirjalili, Seyedali</creatorcontrib><creatorcontrib>Sait, Sadiq M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Shubham</au><au>Abderazek, Hammoudi</au><au>Yıldız, Betül Sultan</au><au>Yildiz, Ali Riza</au><au>Mirjalili, Seyedali</au><au>Sait, Sadiq M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of metaheuristic optimization algorithms for solving constrained mechanical design optimization problems</atitle><jtitle>Expert systems with applications</jtitle><date>2021-11-30</date><risdate>2021</risdate><volume>183</volume><spage>115351</spage><pages>115351-</pages><artnum>115351</artnum><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>•Nine recent meta-heuristics are used to optimize eight mechanical design problems.•Theoretical and numerical comparisons are extensively investigated.•The results show the merits of the methods used in solving the case studies.
Determining the solution for real mechanical design problems is a challenging task when using the newly developed and efficient swarm intelligence algorithms. There are so many difficulties to be addressed, including but not limited to mixed decision variables, diverse constraints, inherent errors, conflicting objectives, and numerous locally optimal solutions. This work analyzes the behavior of nine metaheuristic algorithms, namely, salp swarm algorithm (SSA), multi-verse optimizer (MVO), moth-flame optimizer (MFO), atom search optimization (ASO), ecogeography-based optimization (EBO), queuing search algorithm (QSA), equilibrium optimizer (EO), evolutionary strategy (ES) and hybrid self-adaptive orthogonal genetic algorithm (HSOGA). The efficiency of these algorithms is evaluated on eight mechanical design problems using the solution quality and convergence analysis, which verifies the wide applicability of these algorithms to real-world application problems.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2021.115351</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4174 |
ispartof | Expert systems with applications, 2021-11, Vol.183, p.115351, Article 115351 |
issn | 0957-4174 1873-6793 |
language | eng |
recordid | cdi_proquest_journals_2579414007 |
source | Elsevier ScienceDirect Journals |
subjects | Adaptive algorithms Algorithms Constraints Design optimization Evolutionary algorithms Exploitation Exploration Genetic algorithms Heuristic methods Mechanical design problems Metaheuristic algorithms Optimization Search algorithms Swarm intelligence |
title | Comparison of metaheuristic optimization algorithms for solving constrained mechanical design optimization problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T06%3A13%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20metaheuristic%20optimization%20algorithms%20for%20solving%20constrained%20mechanical%20design%20optimization%20problems&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Gupta,%20Shubham&rft.date=2021-11-30&rft.volume=183&rft.spage=115351&rft.pages=115351-&rft.artnum=115351&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2021.115351&rft_dat=%3Cproquest_cross%3E2579414007%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579414007&rft_id=info:pmid/&rft_els_id=S095741742100779X&rfr_iscdi=true |