Comparison of metaheuristic optimization algorithms for solving constrained mechanical design optimization problems

•Nine recent meta-heuristics are used to optimize eight mechanical design problems.•Theoretical and numerical comparisons are extensively investigated.•The results show the merits of the methods used in solving the case studies. Determining the solution for real mechanical design problems is a chall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2021-11, Vol.183, p.115351, Article 115351
Hauptverfasser: Gupta, Shubham, Abderazek, Hammoudi, Yıldız, Betül Sultan, Yildiz, Ali Riza, Mirjalili, Seyedali, Sait, Sadiq M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 115351
container_title Expert systems with applications
container_volume 183
creator Gupta, Shubham
Abderazek, Hammoudi
Yıldız, Betül Sultan
Yildiz, Ali Riza
Mirjalili, Seyedali
Sait, Sadiq M.
description •Nine recent meta-heuristics are used to optimize eight mechanical design problems.•Theoretical and numerical comparisons are extensively investigated.•The results show the merits of the methods used in solving the case studies. Determining the solution for real mechanical design problems is a challenging task when using the newly developed and efficient swarm intelligence algorithms. There are so many difficulties to be addressed, including but not limited to mixed decision variables, diverse constraints, inherent errors, conflicting objectives, and numerous locally optimal solutions. This work analyzes the behavior of nine metaheuristic algorithms, namely, salp swarm algorithm (SSA), multi-verse optimizer (MVO), moth-flame optimizer (MFO), atom search optimization (ASO), ecogeography-based optimization (EBO), queuing search algorithm (QSA), equilibrium optimizer (EO), evolutionary strategy (ES) and hybrid self-adaptive orthogonal genetic algorithm (HSOGA). The efficiency of these algorithms is evaluated on eight mechanical design problems using the solution quality and convergence analysis, which verifies the wide applicability of these algorithms to real-world application problems.
doi_str_mv 10.1016/j.eswa.2021.115351
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2579414007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S095741742100779X</els_id><sourcerecordid>2579414007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-40302ae69148fc747a9818a3ac1083eedbd2203a5d47dd6fdc73aed9973d2fc63</originalsourceid><addsrcrecordid>eNp9kEtLxDAQx4MouK5-AU8Fz615tWnBiyy-YMGLnkM2me6mtE1Nsiv66c1SL148DcP8H8MPoWuCC4JJddsVED5VQTElBSElK8kJWpBasLwSDTtFC9yUIudE8HN0EUKHMREYiwUKKzdMytvgxsy12QBR7WCf9mh15qZoB_utok1X1W-dt3E3hKx1PguuP9hxm2k3huiVHcEkt96p0WrVZwaC3Y5_EybvNj0M4RKdtaoPcPU7l-j98eFt9ZyvX59eVvfrXLOGx5xjhqmCqiG8brXgQjU1qRVTmuCaAZiNoRQzVRoujKlaowVTYJpGMENbXbEluplzU_HHHkKUndv7MVVKWoqGE54QJBWdVdq7EDy0cvJ2UP5LEiyPcGUnj3DlEa6c4SbT3WyC9P_BgpdBWxg1GOtBR2mc_c_-A73nhoU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579414007</pqid></control><display><type>article</type><title>Comparison of metaheuristic optimization algorithms for solving constrained mechanical design optimization problems</title><source>Elsevier ScienceDirect Journals</source><creator>Gupta, Shubham ; Abderazek, Hammoudi ; Yıldız, Betül Sultan ; Yildiz, Ali Riza ; Mirjalili, Seyedali ; Sait, Sadiq M.</creator><creatorcontrib>Gupta, Shubham ; Abderazek, Hammoudi ; Yıldız, Betül Sultan ; Yildiz, Ali Riza ; Mirjalili, Seyedali ; Sait, Sadiq M.</creatorcontrib><description>•Nine recent meta-heuristics are used to optimize eight mechanical design problems.•Theoretical and numerical comparisons are extensively investigated.•The results show the merits of the methods used in solving the case studies. Determining the solution for real mechanical design problems is a challenging task when using the newly developed and efficient swarm intelligence algorithms. There are so many difficulties to be addressed, including but not limited to mixed decision variables, diverse constraints, inherent errors, conflicting objectives, and numerous locally optimal solutions. This work analyzes the behavior of nine metaheuristic algorithms, namely, salp swarm algorithm (SSA), multi-verse optimizer (MVO), moth-flame optimizer (MFO), atom search optimization (ASO), ecogeography-based optimization (EBO), queuing search algorithm (QSA), equilibrium optimizer (EO), evolutionary strategy (ES) and hybrid self-adaptive orthogonal genetic algorithm (HSOGA). The efficiency of these algorithms is evaluated on eight mechanical design problems using the solution quality and convergence analysis, which verifies the wide applicability of these algorithms to real-world application problems.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2021.115351</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Adaptive algorithms ; Algorithms ; Constraints ; Design optimization ; Evolutionary algorithms ; Exploitation ; Exploration ; Genetic algorithms ; Heuristic methods ; Mechanical design problems ; Metaheuristic algorithms ; Optimization ; Search algorithms ; Swarm intelligence</subject><ispartof>Expert systems with applications, 2021-11, Vol.183, p.115351, Article 115351</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 30, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-40302ae69148fc747a9818a3ac1083eedbd2203a5d47dd6fdc73aed9973d2fc63</citedby><cites>FETCH-LOGICAL-c394t-40302ae69148fc747a9818a3ac1083eedbd2203a5d47dd6fdc73aed9973d2fc63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S095741742100779X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Gupta, Shubham</creatorcontrib><creatorcontrib>Abderazek, Hammoudi</creatorcontrib><creatorcontrib>Yıldız, Betül Sultan</creatorcontrib><creatorcontrib>Yildiz, Ali Riza</creatorcontrib><creatorcontrib>Mirjalili, Seyedali</creatorcontrib><creatorcontrib>Sait, Sadiq M.</creatorcontrib><title>Comparison of metaheuristic optimization algorithms for solving constrained mechanical design optimization problems</title><title>Expert systems with applications</title><description>•Nine recent meta-heuristics are used to optimize eight mechanical design problems.•Theoretical and numerical comparisons are extensively investigated.•The results show the merits of the methods used in solving the case studies. Determining the solution for real mechanical design problems is a challenging task when using the newly developed and efficient swarm intelligence algorithms. There are so many difficulties to be addressed, including but not limited to mixed decision variables, diverse constraints, inherent errors, conflicting objectives, and numerous locally optimal solutions. This work analyzes the behavior of nine metaheuristic algorithms, namely, salp swarm algorithm (SSA), multi-verse optimizer (MVO), moth-flame optimizer (MFO), atom search optimization (ASO), ecogeography-based optimization (EBO), queuing search algorithm (QSA), equilibrium optimizer (EO), evolutionary strategy (ES) and hybrid self-adaptive orthogonal genetic algorithm (HSOGA). The efficiency of these algorithms is evaluated on eight mechanical design problems using the solution quality and convergence analysis, which verifies the wide applicability of these algorithms to real-world application problems.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Constraints</subject><subject>Design optimization</subject><subject>Evolutionary algorithms</subject><subject>Exploitation</subject><subject>Exploration</subject><subject>Genetic algorithms</subject><subject>Heuristic methods</subject><subject>Mechanical design problems</subject><subject>Metaheuristic algorithms</subject><subject>Optimization</subject><subject>Search algorithms</subject><subject>Swarm intelligence</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAQx4MouK5-AU8Fz615tWnBiyy-YMGLnkM2me6mtE1Nsiv66c1SL148DcP8H8MPoWuCC4JJddsVED5VQTElBSElK8kJWpBasLwSDTtFC9yUIudE8HN0EUKHMREYiwUKKzdMytvgxsy12QBR7WCf9mh15qZoB_utok1X1W-dt3E3hKx1PguuP9hxm2k3huiVHcEkt96p0WrVZwaC3Y5_EybvNj0M4RKdtaoPcPU7l-j98eFt9ZyvX59eVvfrXLOGx5xjhqmCqiG8brXgQjU1qRVTmuCaAZiNoRQzVRoujKlaowVTYJpGMENbXbEluplzU_HHHkKUndv7MVVKWoqGE54QJBWdVdq7EDy0cvJ2UP5LEiyPcGUnj3DlEa6c4SbT3WyC9P_BgpdBWxg1GOtBR2mc_c_-A73nhoU</recordid><startdate>20211130</startdate><enddate>20211130</enddate><creator>Gupta, Shubham</creator><creator>Abderazek, Hammoudi</creator><creator>Yıldız, Betül Sultan</creator><creator>Yildiz, Ali Riza</creator><creator>Mirjalili, Seyedali</creator><creator>Sait, Sadiq M.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20211130</creationdate><title>Comparison of metaheuristic optimization algorithms for solving constrained mechanical design optimization problems</title><author>Gupta, Shubham ; Abderazek, Hammoudi ; Yıldız, Betül Sultan ; Yildiz, Ali Riza ; Mirjalili, Seyedali ; Sait, Sadiq M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-40302ae69148fc747a9818a3ac1083eedbd2203a5d47dd6fdc73aed9973d2fc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Constraints</topic><topic>Design optimization</topic><topic>Evolutionary algorithms</topic><topic>Exploitation</topic><topic>Exploration</topic><topic>Genetic algorithms</topic><topic>Heuristic methods</topic><topic>Mechanical design problems</topic><topic>Metaheuristic algorithms</topic><topic>Optimization</topic><topic>Search algorithms</topic><topic>Swarm intelligence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Shubham</creatorcontrib><creatorcontrib>Abderazek, Hammoudi</creatorcontrib><creatorcontrib>Yıldız, Betül Sultan</creatorcontrib><creatorcontrib>Yildiz, Ali Riza</creatorcontrib><creatorcontrib>Mirjalili, Seyedali</creatorcontrib><creatorcontrib>Sait, Sadiq M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Shubham</au><au>Abderazek, Hammoudi</au><au>Yıldız, Betül Sultan</au><au>Yildiz, Ali Riza</au><au>Mirjalili, Seyedali</au><au>Sait, Sadiq M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of metaheuristic optimization algorithms for solving constrained mechanical design optimization problems</atitle><jtitle>Expert systems with applications</jtitle><date>2021-11-30</date><risdate>2021</risdate><volume>183</volume><spage>115351</spage><pages>115351-</pages><artnum>115351</artnum><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>•Nine recent meta-heuristics are used to optimize eight mechanical design problems.•Theoretical and numerical comparisons are extensively investigated.•The results show the merits of the methods used in solving the case studies. Determining the solution for real mechanical design problems is a challenging task when using the newly developed and efficient swarm intelligence algorithms. There are so many difficulties to be addressed, including but not limited to mixed decision variables, diverse constraints, inherent errors, conflicting objectives, and numerous locally optimal solutions. This work analyzes the behavior of nine metaheuristic algorithms, namely, salp swarm algorithm (SSA), multi-verse optimizer (MVO), moth-flame optimizer (MFO), atom search optimization (ASO), ecogeography-based optimization (EBO), queuing search algorithm (QSA), equilibrium optimizer (EO), evolutionary strategy (ES) and hybrid self-adaptive orthogonal genetic algorithm (HSOGA). The efficiency of these algorithms is evaluated on eight mechanical design problems using the solution quality and convergence analysis, which verifies the wide applicability of these algorithms to real-world application problems.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2021.115351</doi></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2021-11, Vol.183, p.115351, Article 115351
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_journals_2579414007
source Elsevier ScienceDirect Journals
subjects Adaptive algorithms
Algorithms
Constraints
Design optimization
Evolutionary algorithms
Exploitation
Exploration
Genetic algorithms
Heuristic methods
Mechanical design problems
Metaheuristic algorithms
Optimization
Search algorithms
Swarm intelligence
title Comparison of metaheuristic optimization algorithms for solving constrained mechanical design optimization problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T06%3A13%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20metaheuristic%20optimization%20algorithms%20for%20solving%20constrained%20mechanical%20design%20optimization%20problems&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Gupta,%20Shubham&rft.date=2021-11-30&rft.volume=183&rft.spage=115351&rft.pages=115351-&rft.artnum=115351&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2021.115351&rft_dat=%3Cproquest_cross%3E2579414007%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579414007&rft_id=info:pmid/&rft_els_id=S095741742100779X&rfr_iscdi=true