A Decision Rule Approach for Two-Stage Data-Driven Distributionally Robust Optimization Problems with Random Recourse
We study two-stage stochastic optimization problems with random recourse, where the adaptive decisions are multiplied with the uncertain parameters in both the objective function and the constraints. To mitigate the computational intractability of infinite-dimensional optimization, we propose a scal...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Fan, Xiangyi Hanasusanto, Grani A |
description | We study two-stage stochastic optimization problems with random recourse, where the adaptive decisions are multiplied with the uncertain parameters in both the objective function and the constraints. To mitigate the computational intractability of infinite-dimensional optimization, we propose a scalable approximation scheme via piecewise linear and piecewise quadratic decision rules. We then develop a data-driven distributionally robust framework with two layers of robustness to address distributionally uncertainty. The emerging optimization problem can be reformulated as an exact copositive program, which admits tractable approximations in semidefinite programming. We design a decomposition algorithm where smaller-size semidefinite programs can be solved in parallel, which further reduces the runtime. Lastly, we establish the performance guarantees of the proposed scheme and demonstrate its effectiveness through numerical examples. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2579212974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2579212974</sourcerecordid><originalsourceid>FETCH-proquest_journals_25792129743</originalsourceid><addsrcrecordid>eNqNjUEKwjAURIMgWNQ7fHAdaFNrdSlWcafU7iWtX42kTc1PFD29FTyAq4HhvZkeC0QcR3w-FWLAxkS3MAzFLBVJEgfMLyHDSpEyDeReIyzb1hpZXeFsLBRPww9OXhAy6STPrHpgA5kiZ1XpXSdJrV-Qm9KTg13rVK3e8tvD3ppSY03wVO4KuWxOpoYcK-Mt4Yj1z1ITjn85ZJPNulhtefd990jueOu4bpyOIkkXIhKLdBr_R30ARLlMwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579212974</pqid></control><display><type>article</type><title>A Decision Rule Approach for Two-Stage Data-Driven Distributionally Robust Optimization Problems with Random Recourse</title><source>Free E- Journals</source><creator>Fan, Xiangyi ; Hanasusanto, Grani A</creator><creatorcontrib>Fan, Xiangyi ; Hanasusanto, Grani A</creatorcontrib><description>We study two-stage stochastic optimization problems with random recourse, where the adaptive decisions are multiplied with the uncertain parameters in both the objective function and the constraints. To mitigate the computational intractability of infinite-dimensional optimization, we propose a scalable approximation scheme via piecewise linear and piecewise quadratic decision rules. We then develop a data-driven distributionally robust framework with two layers of robustness to address distributionally uncertainty. The emerging optimization problem can be reformulated as an exact copositive program, which admits tractable approximations in semidefinite programming. We design a decomposition algorithm where smaller-size semidefinite programs can be solved in parallel, which further reduces the runtime. Lastly, we establish the performance guarantees of the proposed scheme and demonstrate its effectiveness through numerical examples.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Optimization ; Parameter uncertainty ; Robustness (mathematics) ; Semidefinite programming</subject><ispartof>arXiv.org, 2021-10</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>782,786</link.rule.ids></links><search><creatorcontrib>Fan, Xiangyi</creatorcontrib><creatorcontrib>Hanasusanto, Grani A</creatorcontrib><title>A Decision Rule Approach for Two-Stage Data-Driven Distributionally Robust Optimization Problems with Random Recourse</title><title>arXiv.org</title><description>We study two-stage stochastic optimization problems with random recourse, where the adaptive decisions are multiplied with the uncertain parameters in both the objective function and the constraints. To mitigate the computational intractability of infinite-dimensional optimization, we propose a scalable approximation scheme via piecewise linear and piecewise quadratic decision rules. We then develop a data-driven distributionally robust framework with two layers of robustness to address distributionally uncertainty. The emerging optimization problem can be reformulated as an exact copositive program, which admits tractable approximations in semidefinite programming. We design a decomposition algorithm where smaller-size semidefinite programs can be solved in parallel, which further reduces the runtime. Lastly, we establish the performance guarantees of the proposed scheme and demonstrate its effectiveness through numerical examples.</description><subject>Algorithms</subject><subject>Optimization</subject><subject>Parameter uncertainty</subject><subject>Robustness (mathematics)</subject><subject>Semidefinite programming</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjUEKwjAURIMgWNQ7fHAdaFNrdSlWcafU7iWtX42kTc1PFD29FTyAq4HhvZkeC0QcR3w-FWLAxkS3MAzFLBVJEgfMLyHDSpEyDeReIyzb1hpZXeFsLBRPww9OXhAy6STPrHpgA5kiZ1XpXSdJrV-Qm9KTg13rVK3e8tvD3ppSY03wVO4KuWxOpoYcK-Mt4Yj1z1ITjn85ZJPNulhtefd990jueOu4bpyOIkkXIhKLdBr_R30ARLlMwQ</recordid><startdate>20211004</startdate><enddate>20211004</enddate><creator>Fan, Xiangyi</creator><creator>Hanasusanto, Grani A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20211004</creationdate><title>A Decision Rule Approach for Two-Stage Data-Driven Distributionally Robust Optimization Problems with Random Recourse</title><author>Fan, Xiangyi ; Hanasusanto, Grani A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25792129743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Optimization</topic><topic>Parameter uncertainty</topic><topic>Robustness (mathematics)</topic><topic>Semidefinite programming</topic><toplevel>online_resources</toplevel><creatorcontrib>Fan, Xiangyi</creatorcontrib><creatorcontrib>Hanasusanto, Grani A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Xiangyi</au><au>Hanasusanto, Grani A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Decision Rule Approach for Two-Stage Data-Driven Distributionally Robust Optimization Problems with Random Recourse</atitle><jtitle>arXiv.org</jtitle><date>2021-10-04</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>We study two-stage stochastic optimization problems with random recourse, where the adaptive decisions are multiplied with the uncertain parameters in both the objective function and the constraints. To mitigate the computational intractability of infinite-dimensional optimization, we propose a scalable approximation scheme via piecewise linear and piecewise quadratic decision rules. We then develop a data-driven distributionally robust framework with two layers of robustness to address distributionally uncertainty. The emerging optimization problem can be reformulated as an exact copositive program, which admits tractable approximations in semidefinite programming. We design a decomposition algorithm where smaller-size semidefinite programs can be solved in parallel, which further reduces the runtime. Lastly, we establish the performance guarantees of the proposed scheme and demonstrate its effectiveness through numerical examples.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2579212974 |
source | Free E- Journals |
subjects | Algorithms Optimization Parameter uncertainty Robustness (mathematics) Semidefinite programming |
title | A Decision Rule Approach for Two-Stage Data-Driven Distributionally Robust Optimization Problems with Random Recourse |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T08%3A17%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Decision%20Rule%20Approach%20for%20Two-Stage%20Data-Driven%20Distributionally%20Robust%20Optimization%20Problems%20with%20Random%20Recourse&rft.jtitle=arXiv.org&rft.au=Fan,%20Xiangyi&rft.date=2021-10-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2579212974%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579212974&rft_id=info:pmid/&rfr_iscdi=true |