A novel approach for the efficient modeling of material dissolution in electrochemical machining

This work presents a novel approach to efficiently model anodic dissolution in electrochemical machining. Earlier modeling approaches employ a strict space discretization of the anodic surface that is associated with a remeshing procedure at every time step. Besides that, the presented model is form...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of solids and structures 2021-10, Vol.229, p.111106, Article 111106
Hauptverfasser: van der Velden, Tim, Rommes, Bob, Klink, Andreas, Reese, Stefanie, Waimann, Johanna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 111106
container_title International journal of solids and structures
container_volume 229
creator van der Velden, Tim
Rommes, Bob
Klink, Andreas
Reese, Stefanie
Waimann, Johanna
description This work presents a novel approach to efficiently model anodic dissolution in electrochemical machining. Earlier modeling approaches employ a strict space discretization of the anodic surface that is associated with a remeshing procedure at every time step. Besides that, the presented model is formulated by means of effective material parameters. Thereby, it allows to use a constant mesh for the entire simulation and, thus, decreases the computational costs. Based on Faraday’s law of electrolysis, an effective dissolution level is introduced, which describes the ratio of a dissolved volume and its corresponding reference volume. This inner variable allows the modeling of the complex dissolution process without the necessity of computationally expensive remeshing by controlling the effective material parameters. Additionally, full coupling of the thermoelectric problem is considered and its linearization and numerical implementation are presented. The model shows good agreement with analytical and experimental validation examples by yielding realistic results. Furthermore, simulations of a pulsed electrochemical machining process yield a process signature component of the surface roughness related to the specific accumulated electric charge. The numerical examples confirm the simulation’s computational efficiency and accurate modeling qualities.
doi_str_mv 10.1016/j.ijsolstr.2021.111106
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2579139149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768321001967</els_id><sourcerecordid>2579139149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-3c5e553b30f74c0de4354fccfad5bf4b538cf426126af8486db2b8e2256daa073</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEuXxF5Alzil-xUluVBUvqRIXOBvHWVNHSVxstxL_HleBM3vZw87Maj6EbihZUkLlXb90ffRDTGHJCKNLmofIE7SgddUUjAp5ihaEMFJUsubn6CLGnhAieEMW6GOFJ3-AAevdLnhtttj6gNMWMFjrjIMp4dF3MLjpE3uLR50gOD3gzsX8dJ-cn7CbMAxgUvBmC6Mz-TzmKDdl0xU6s3qIcP27L9H748Pb-rnYvD69rFebwvC6TgU3JZQlbzmxlTCkA8FLYY2xuitbK9qS18YKJimT2taill3L2hoYK2WnNan4Jbqdc3ONrz3EpHq_D1N-qVhZNZQ3VDRZJWeVCT7GAFbtght1-FaUqCNN1as_mupIU800s_F-NkLucHAQVDzCMdC5kJurzrv_In4AodWDGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579139149</pqid></control><display><type>article</type><title>A novel approach for the efficient modeling of material dissolution in electrochemical machining</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB Electronic Journals Library</source><creator>van der Velden, Tim ; Rommes, Bob ; Klink, Andreas ; Reese, Stefanie ; Waimann, Johanna</creator><creatorcontrib>van der Velden, Tim ; Rommes, Bob ; Klink, Andreas ; Reese, Stefanie ; Waimann, Johanna</creatorcontrib><description>This work presents a novel approach to efficiently model anodic dissolution in electrochemical machining. Earlier modeling approaches employ a strict space discretization of the anodic surface that is associated with a remeshing procedure at every time step. Besides that, the presented model is formulated by means of effective material parameters. Thereby, it allows to use a constant mesh for the entire simulation and, thus, decreases the computational costs. Based on Faraday’s law of electrolysis, an effective dissolution level is introduced, which describes the ratio of a dissolved volume and its corresponding reference volume. This inner variable allows the modeling of the complex dissolution process without the necessity of computationally expensive remeshing by controlling the effective material parameters. Additionally, full coupling of the thermoelectric problem is considered and its linearization and numerical implementation are presented. The model shows good agreement with analytical and experimental validation examples by yielding realistic results. Furthermore, simulations of a pulsed electrochemical machining process yield a process signature component of the surface roughness related to the specific accumulated electric charge. The numerical examples confirm the simulation’s computational efficiency and accurate modeling qualities.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/j.ijsolstr.2021.111106</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Anodic dissolution ; Computing costs ; Dissolution ; Electrochemical machining ; Electrolysis ; Finite element method ; Mathematical models ; Parameters ; Simulation ; Surface roughness</subject><ispartof>International journal of solids and structures, 2021-10, Vol.229, p.111106, Article 111106</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-3c5e553b30f74c0de4354fccfad5bf4b538cf426126af8486db2b8e2256daa073</citedby><cites>FETCH-LOGICAL-c388t-3c5e553b30f74c0de4354fccfad5bf4b538cf426126af8486db2b8e2256daa073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijsolstr.2021.111106$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>van der Velden, Tim</creatorcontrib><creatorcontrib>Rommes, Bob</creatorcontrib><creatorcontrib>Klink, Andreas</creatorcontrib><creatorcontrib>Reese, Stefanie</creatorcontrib><creatorcontrib>Waimann, Johanna</creatorcontrib><title>A novel approach for the efficient modeling of material dissolution in electrochemical machining</title><title>International journal of solids and structures</title><description>This work presents a novel approach to efficiently model anodic dissolution in electrochemical machining. Earlier modeling approaches employ a strict space discretization of the anodic surface that is associated with a remeshing procedure at every time step. Besides that, the presented model is formulated by means of effective material parameters. Thereby, it allows to use a constant mesh for the entire simulation and, thus, decreases the computational costs. Based on Faraday’s law of electrolysis, an effective dissolution level is introduced, which describes the ratio of a dissolved volume and its corresponding reference volume. This inner variable allows the modeling of the complex dissolution process without the necessity of computationally expensive remeshing by controlling the effective material parameters. Additionally, full coupling of the thermoelectric problem is considered and its linearization and numerical implementation are presented. The model shows good agreement with analytical and experimental validation examples by yielding realistic results. Furthermore, simulations of a pulsed electrochemical machining process yield a process signature component of the surface roughness related to the specific accumulated electric charge. The numerical examples confirm the simulation’s computational efficiency and accurate modeling qualities.</description><subject>Anodic dissolution</subject><subject>Computing costs</subject><subject>Dissolution</subject><subject>Electrochemical machining</subject><subject>Electrolysis</subject><subject>Finite element method</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Simulation</subject><subject>Surface roughness</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEuXxF5Alzil-xUluVBUvqRIXOBvHWVNHSVxstxL_HleBM3vZw87Maj6EbihZUkLlXb90ffRDTGHJCKNLmofIE7SgddUUjAp5ihaEMFJUsubn6CLGnhAieEMW6GOFJ3-AAevdLnhtttj6gNMWMFjrjIMp4dF3MLjpE3uLR50gOD3gzsX8dJ-cn7CbMAxgUvBmC6Mz-TzmKDdl0xU6s3qIcP27L9H748Pb-rnYvD69rFebwvC6TgU3JZQlbzmxlTCkA8FLYY2xuitbK9qS18YKJimT2taill3L2hoYK2WnNan4Jbqdc3ONrz3EpHq_D1N-qVhZNZQ3VDRZJWeVCT7GAFbtght1-FaUqCNN1as_mupIU800s_F-NkLucHAQVDzCMdC5kJurzrv_In4AodWDGg</recordid><startdate>20211015</startdate><enddate>20211015</enddate><creator>van der Velden, Tim</creator><creator>Rommes, Bob</creator><creator>Klink, Andreas</creator><creator>Reese, Stefanie</creator><creator>Waimann, Johanna</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20211015</creationdate><title>A novel approach for the efficient modeling of material dissolution in electrochemical machining</title><author>van der Velden, Tim ; Rommes, Bob ; Klink, Andreas ; Reese, Stefanie ; Waimann, Johanna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-3c5e553b30f74c0de4354fccfad5bf4b538cf426126af8486db2b8e2256daa073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anodic dissolution</topic><topic>Computing costs</topic><topic>Dissolution</topic><topic>Electrochemical machining</topic><topic>Electrolysis</topic><topic>Finite element method</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Simulation</topic><topic>Surface roughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van der Velden, Tim</creatorcontrib><creatorcontrib>Rommes, Bob</creatorcontrib><creatorcontrib>Klink, Andreas</creatorcontrib><creatorcontrib>Reese, Stefanie</creatorcontrib><creatorcontrib>Waimann, Johanna</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van der Velden, Tim</au><au>Rommes, Bob</au><au>Klink, Andreas</au><au>Reese, Stefanie</au><au>Waimann, Johanna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel approach for the efficient modeling of material dissolution in electrochemical machining</atitle><jtitle>International journal of solids and structures</jtitle><date>2021-10-15</date><risdate>2021</risdate><volume>229</volume><spage>111106</spage><pages>111106-</pages><artnum>111106</artnum><issn>0020-7683</issn><eissn>1879-2146</eissn><abstract>This work presents a novel approach to efficiently model anodic dissolution in electrochemical machining. Earlier modeling approaches employ a strict space discretization of the anodic surface that is associated with a remeshing procedure at every time step. Besides that, the presented model is formulated by means of effective material parameters. Thereby, it allows to use a constant mesh for the entire simulation and, thus, decreases the computational costs. Based on Faraday’s law of electrolysis, an effective dissolution level is introduced, which describes the ratio of a dissolved volume and its corresponding reference volume. This inner variable allows the modeling of the complex dissolution process without the necessity of computationally expensive remeshing by controlling the effective material parameters. Additionally, full coupling of the thermoelectric problem is considered and its linearization and numerical implementation are presented. The model shows good agreement with analytical and experimental validation examples by yielding realistic results. Furthermore, simulations of a pulsed electrochemical machining process yield a process signature component of the surface roughness related to the specific accumulated electric charge. The numerical examples confirm the simulation’s computational efficiency and accurate modeling qualities.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2021.111106</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7683
ispartof International journal of solids and structures, 2021-10, Vol.229, p.111106, Article 111106
issn 0020-7683
1879-2146
language eng
recordid cdi_proquest_journals_2579139149
source Elsevier ScienceDirect Journals Complete; EZB Electronic Journals Library
subjects Anodic dissolution
Computing costs
Dissolution
Electrochemical machining
Electrolysis
Finite element method
Mathematical models
Parameters
Simulation
Surface roughness
title A novel approach for the efficient modeling of material dissolution in electrochemical machining
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A57%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20approach%20for%20the%20efficient%20modeling%20of%20material%20dissolution%20in%20electrochemical%20machining&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=van%20der%20Velden,%20Tim&rft.date=2021-10-15&rft.volume=229&rft.spage=111106&rft.pages=111106-&rft.artnum=111106&rft.issn=0020-7683&rft.eissn=1879-2146&rft_id=info:doi/10.1016/j.ijsolstr.2021.111106&rft_dat=%3Cproquest_cross%3E2579139149%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579139149&rft_id=info:pmid/&rft_els_id=S0020768321001967&rfr_iscdi=true