A novel approach for the efficient modeling of material dissolution in electrochemical machining
This work presents a novel approach to efficiently model anodic dissolution in electrochemical machining. Earlier modeling approaches employ a strict space discretization of the anodic surface that is associated with a remeshing procedure at every time step. Besides that, the presented model is form...
Gespeichert in:
Veröffentlicht in: | International journal of solids and structures 2021-10, Vol.229, p.111106, Article 111106 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 111106 |
container_title | International journal of solids and structures |
container_volume | 229 |
creator | van der Velden, Tim Rommes, Bob Klink, Andreas Reese, Stefanie Waimann, Johanna |
description | This work presents a novel approach to efficiently model anodic dissolution in electrochemical machining. Earlier modeling approaches employ a strict space discretization of the anodic surface that is associated with a remeshing procedure at every time step. Besides that, the presented model is formulated by means of effective material parameters. Thereby, it allows to use a constant mesh for the entire simulation and, thus, decreases the computational costs. Based on Faraday’s law of electrolysis, an effective dissolution level is introduced, which describes the ratio of a dissolved volume and its corresponding reference volume. This inner variable allows the modeling of the complex dissolution process without the necessity of computationally expensive remeshing by controlling the effective material parameters. Additionally, full coupling of the thermoelectric problem is considered and its linearization and numerical implementation are presented. The model shows good agreement with analytical and experimental validation examples by yielding realistic results. Furthermore, simulations of a pulsed electrochemical machining process yield a process signature component of the surface roughness related to the specific accumulated electric charge. The numerical examples confirm the simulation’s computational efficiency and accurate modeling qualities. |
doi_str_mv | 10.1016/j.ijsolstr.2021.111106 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2579139149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768321001967</els_id><sourcerecordid>2579139149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-3c5e553b30f74c0de4354fccfad5bf4b538cf426126af8486db2b8e2256daa073</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEuXxF5Alzil-xUluVBUvqRIXOBvHWVNHSVxstxL_HleBM3vZw87Maj6EbihZUkLlXb90ffRDTGHJCKNLmofIE7SgddUUjAp5ihaEMFJUsubn6CLGnhAieEMW6GOFJ3-AAevdLnhtttj6gNMWMFjrjIMp4dF3MLjpE3uLR50gOD3gzsX8dJ-cn7CbMAxgUvBmC6Mz-TzmKDdl0xU6s3qIcP27L9H748Pb-rnYvD69rFebwvC6TgU3JZQlbzmxlTCkA8FLYY2xuitbK9qS18YKJimT2taill3L2hoYK2WnNan4Jbqdc3ONrz3EpHq_D1N-qVhZNZQ3VDRZJWeVCT7GAFbtght1-FaUqCNN1as_mupIU800s_F-NkLucHAQVDzCMdC5kJurzrv_In4AodWDGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579139149</pqid></control><display><type>article</type><title>A novel approach for the efficient modeling of material dissolution in electrochemical machining</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB Electronic Journals Library</source><creator>van der Velden, Tim ; Rommes, Bob ; Klink, Andreas ; Reese, Stefanie ; Waimann, Johanna</creator><creatorcontrib>van der Velden, Tim ; Rommes, Bob ; Klink, Andreas ; Reese, Stefanie ; Waimann, Johanna</creatorcontrib><description>This work presents a novel approach to efficiently model anodic dissolution in electrochemical machining. Earlier modeling approaches employ a strict space discretization of the anodic surface that is associated with a remeshing procedure at every time step. Besides that, the presented model is formulated by means of effective material parameters. Thereby, it allows to use a constant mesh for the entire simulation and, thus, decreases the computational costs. Based on Faraday’s law of electrolysis, an effective dissolution level is introduced, which describes the ratio of a dissolved volume and its corresponding reference volume. This inner variable allows the modeling of the complex dissolution process without the necessity of computationally expensive remeshing by controlling the effective material parameters. Additionally, full coupling of the thermoelectric problem is considered and its linearization and numerical implementation are presented. The model shows good agreement with analytical and experimental validation examples by yielding realistic results. Furthermore, simulations of a pulsed electrochemical machining process yield a process signature component of the surface roughness related to the specific accumulated electric charge. The numerical examples confirm the simulation’s computational efficiency and accurate modeling qualities.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/j.ijsolstr.2021.111106</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Anodic dissolution ; Computing costs ; Dissolution ; Electrochemical machining ; Electrolysis ; Finite element method ; Mathematical models ; Parameters ; Simulation ; Surface roughness</subject><ispartof>International journal of solids and structures, 2021-10, Vol.229, p.111106, Article 111106</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-3c5e553b30f74c0de4354fccfad5bf4b538cf426126af8486db2b8e2256daa073</citedby><cites>FETCH-LOGICAL-c388t-3c5e553b30f74c0de4354fccfad5bf4b538cf426126af8486db2b8e2256daa073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijsolstr.2021.111106$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>van der Velden, Tim</creatorcontrib><creatorcontrib>Rommes, Bob</creatorcontrib><creatorcontrib>Klink, Andreas</creatorcontrib><creatorcontrib>Reese, Stefanie</creatorcontrib><creatorcontrib>Waimann, Johanna</creatorcontrib><title>A novel approach for the efficient modeling of material dissolution in electrochemical machining</title><title>International journal of solids and structures</title><description>This work presents a novel approach to efficiently model anodic dissolution in electrochemical machining. Earlier modeling approaches employ a strict space discretization of the anodic surface that is associated with a remeshing procedure at every time step. Besides that, the presented model is formulated by means of effective material parameters. Thereby, it allows to use a constant mesh for the entire simulation and, thus, decreases the computational costs. Based on Faraday’s law of electrolysis, an effective dissolution level is introduced, which describes the ratio of a dissolved volume and its corresponding reference volume. This inner variable allows the modeling of the complex dissolution process without the necessity of computationally expensive remeshing by controlling the effective material parameters. Additionally, full coupling of the thermoelectric problem is considered and its linearization and numerical implementation are presented. The model shows good agreement with analytical and experimental validation examples by yielding realistic results. Furthermore, simulations of a pulsed electrochemical machining process yield a process signature component of the surface roughness related to the specific accumulated electric charge. The numerical examples confirm the simulation’s computational efficiency and accurate modeling qualities.</description><subject>Anodic dissolution</subject><subject>Computing costs</subject><subject>Dissolution</subject><subject>Electrochemical machining</subject><subject>Electrolysis</subject><subject>Finite element method</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Simulation</subject><subject>Surface roughness</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEuXxF5Alzil-xUluVBUvqRIXOBvHWVNHSVxstxL_HleBM3vZw87Maj6EbihZUkLlXb90ffRDTGHJCKNLmofIE7SgddUUjAp5ihaEMFJUsubn6CLGnhAieEMW6GOFJ3-AAevdLnhtttj6gNMWMFjrjIMp4dF3MLjpE3uLR50gOD3gzsX8dJ-cn7CbMAxgUvBmC6Mz-TzmKDdl0xU6s3qIcP27L9H748Pb-rnYvD69rFebwvC6TgU3JZQlbzmxlTCkA8FLYY2xuitbK9qS18YKJimT2taill3L2hoYK2WnNan4Jbqdc3ONrz3EpHq_D1N-qVhZNZQ3VDRZJWeVCT7GAFbtght1-FaUqCNN1as_mupIU800s_F-NkLucHAQVDzCMdC5kJurzrv_In4AodWDGg</recordid><startdate>20211015</startdate><enddate>20211015</enddate><creator>van der Velden, Tim</creator><creator>Rommes, Bob</creator><creator>Klink, Andreas</creator><creator>Reese, Stefanie</creator><creator>Waimann, Johanna</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20211015</creationdate><title>A novel approach for the efficient modeling of material dissolution in electrochemical machining</title><author>van der Velden, Tim ; Rommes, Bob ; Klink, Andreas ; Reese, Stefanie ; Waimann, Johanna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-3c5e553b30f74c0de4354fccfad5bf4b538cf426126af8486db2b8e2256daa073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anodic dissolution</topic><topic>Computing costs</topic><topic>Dissolution</topic><topic>Electrochemical machining</topic><topic>Electrolysis</topic><topic>Finite element method</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Simulation</topic><topic>Surface roughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van der Velden, Tim</creatorcontrib><creatorcontrib>Rommes, Bob</creatorcontrib><creatorcontrib>Klink, Andreas</creatorcontrib><creatorcontrib>Reese, Stefanie</creatorcontrib><creatorcontrib>Waimann, Johanna</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van der Velden, Tim</au><au>Rommes, Bob</au><au>Klink, Andreas</au><au>Reese, Stefanie</au><au>Waimann, Johanna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel approach for the efficient modeling of material dissolution in electrochemical machining</atitle><jtitle>International journal of solids and structures</jtitle><date>2021-10-15</date><risdate>2021</risdate><volume>229</volume><spage>111106</spage><pages>111106-</pages><artnum>111106</artnum><issn>0020-7683</issn><eissn>1879-2146</eissn><abstract>This work presents a novel approach to efficiently model anodic dissolution in electrochemical machining. Earlier modeling approaches employ a strict space discretization of the anodic surface that is associated with a remeshing procedure at every time step. Besides that, the presented model is formulated by means of effective material parameters. Thereby, it allows to use a constant mesh for the entire simulation and, thus, decreases the computational costs. Based on Faraday’s law of electrolysis, an effective dissolution level is introduced, which describes the ratio of a dissolved volume and its corresponding reference volume. This inner variable allows the modeling of the complex dissolution process without the necessity of computationally expensive remeshing by controlling the effective material parameters. Additionally, full coupling of the thermoelectric problem is considered and its linearization and numerical implementation are presented. The model shows good agreement with analytical and experimental validation examples by yielding realistic results. Furthermore, simulations of a pulsed electrochemical machining process yield a process signature component of the surface roughness related to the specific accumulated electric charge. The numerical examples confirm the simulation’s computational efficiency and accurate modeling qualities.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2021.111106</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7683 |
ispartof | International journal of solids and structures, 2021-10, Vol.229, p.111106, Article 111106 |
issn | 0020-7683 1879-2146 |
language | eng |
recordid | cdi_proquest_journals_2579139149 |
source | Elsevier ScienceDirect Journals Complete; EZB Electronic Journals Library |
subjects | Anodic dissolution Computing costs Dissolution Electrochemical machining Electrolysis Finite element method Mathematical models Parameters Simulation Surface roughness |
title | A novel approach for the efficient modeling of material dissolution in electrochemical machining |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A57%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20approach%20for%20the%20efficient%20modeling%20of%20material%20dissolution%20in%20electrochemical%20machining&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=van%20der%20Velden,%20Tim&rft.date=2021-10-15&rft.volume=229&rft.spage=111106&rft.pages=111106-&rft.artnum=111106&rft.issn=0020-7683&rft.eissn=1879-2146&rft_id=info:doi/10.1016/j.ijsolstr.2021.111106&rft_dat=%3Cproquest_cross%3E2579139149%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579139149&rft_id=info:pmid/&rft_els_id=S0020768321001967&rfr_iscdi=true |