Dense binary Fe–Cu sites promoting CO2 utilization enable highly reversible hybrid Na–CO2 batteries

High-performance and low-cost catalysts are particularly desirable for the exploitation of practical low-overpotential Na–CO2 batteries with protracted cyclability. Herein, a well-defined morphology of nitrogen-rich graphitic carbon frameworks with dense bimetallic active sites (Fe–Cu–N–C) was facil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2021-10, Vol.9 (38), p.22114-22128
Hauptverfasser: Xu, Changfan, Zhan, Jing, Wang, Huanwei, Kang, Yao, Liang, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22128
container_issue 38
container_start_page 22114
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 9
creator Xu, Changfan
Zhan, Jing
Wang, Huanwei
Kang, Yao
Liang, Feng
description High-performance and low-cost catalysts are particularly desirable for the exploitation of practical low-overpotential Na–CO2 batteries with protracted cyclability. Herein, a well-defined morphology of nitrogen-rich graphitic carbon frameworks with dense bimetallic active sites (Fe–Cu–N–C) was facilely prepared by introducing Fe3+ and Cu2+ to regulate in situ grown carbon nanotubes as an advanced catalyst toward hybrid Na–CO2 batteries. Through metal content tuning and carbon architecture altering, Fe–Cu–N–C proved to be dramatically more effective than Cu–N–C and Fe–N–C. As the cathodic catalyst of a hybrid Na–CO2 battery, Fe–Cu–N–C can facilitate the fast evolution and degradation of flocculent discharge products and achieve an excellent long-term cyclability with up to 1550 cycles (over 600 h), which makes it one of the greatest catalysts for hybrid Na–CO2/air batteries that have been reported to date. The observed outstanding battery performance is attributable to the cross-linked conductive framework affording a “highway” for accelerated electron transport and Na+/CO2 diffusion. Besides, the synergistic effects among defect-rich interfaces, Fe/Fe3C nanocrystals, and Fe–Nx and Cu–Nx sites derived from nitrogen atom doping enhance the catalytic activity. In addition, the possible growth and decomposition mechanisms of NaHCO3 products with different morphologies on Fe–N–C, Cu–N–C, and Fe–Cu–N–C electrodes were presented and discussed.
doi_str_mv 10.1039/d1ta06611k
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2579128113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2579128113</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-5ad047b2011f10badea0bb4b3b7cad07e00d0bacedfc8da9f3962c514624d1b23</originalsourceid><addsrcrecordid>eNo9jk1OwzAQhS0EElXphhNYYh2YcX69RIECUkU3sK7seNK6hKTYDlJZcQduyEkwP2I2M3pP877H2CnCOUIqLwwGBUWB-HTAJgJySMpMFof_d1Uds5n3W4hTARRSTtj6inpPXNteuT2f0-f7Rz1ybwN5vnPD8xBsv-b1UvAx2M6-qWCHnlOvdEd8Y9ebbs8dvZLz9kfZa2cNv1ffOfFJqxDIWfIn7KhVnafZ356yx_n1Q32bLJY3d_XlItkhpiHJlYGs1AIQWwStDCnQOtOpLptolQRgotyQaZvKKNmmshBNjlkhMoNapFN29psby7-M5MNqO4yuj8iVyEuJooqc9AvgaVwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579128113</pqid></control><display><type>article</type><title>Dense binary Fe–Cu sites promoting CO2 utilization enable highly reversible hybrid Na–CO2 batteries</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Xu, Changfan ; Zhan, Jing ; Wang, Huanwei ; Kang, Yao ; Liang, Feng</creator><creatorcontrib>Xu, Changfan ; Zhan, Jing ; Wang, Huanwei ; Kang, Yao ; Liang, Feng</creatorcontrib><description>High-performance and low-cost catalysts are particularly desirable for the exploitation of practical low-overpotential Na–CO2 batteries with protracted cyclability. Herein, a well-defined morphology of nitrogen-rich graphitic carbon frameworks with dense bimetallic active sites (Fe–Cu–N–C) was facilely prepared by introducing Fe3+ and Cu2+ to regulate in situ grown carbon nanotubes as an advanced catalyst toward hybrid Na–CO2 batteries. Through metal content tuning and carbon architecture altering, Fe–Cu–N–C proved to be dramatically more effective than Cu–N–C and Fe–N–C. As the cathodic catalyst of a hybrid Na–CO2 battery, Fe–Cu–N–C can facilitate the fast evolution and degradation of flocculent discharge products and achieve an excellent long-term cyclability with up to 1550 cycles (over 600 h), which makes it one of the greatest catalysts for hybrid Na–CO2/air batteries that have been reported to date. The observed outstanding battery performance is attributable to the cross-linked conductive framework affording a “highway” for accelerated electron transport and Na+/CO2 diffusion. Besides, the synergistic effects among defect-rich interfaces, Fe/Fe3C nanocrystals, and Fe–Nx and Cu–Nx sites derived from nitrogen atom doping enhance the catalytic activity. In addition, the possible growth and decomposition mechanisms of NaHCO3 products with different morphologies on Fe–N–C, Cu–N–C, and Fe–Cu–N–C electrodes were presented and discussed.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d1ta06611k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Air batteries ; Bimetals ; Carbon ; Carbon dioxide ; Carbon nanotubes ; Catalysts ; Catalytic activity ; Cementite ; Copper ; Diffusion effects ; Electron transport ; Exploitation ; Interfaces ; Iron ; Iron carbides ; Morphology ; Nanocrystals ; Nanotechnology ; Nanotubes ; Nitrogen ; Sodium bicarbonate ; Synergistic effect</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2021-10, Vol.9 (38), p.22114-22128</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xu, Changfan</creatorcontrib><creatorcontrib>Zhan, Jing</creatorcontrib><creatorcontrib>Wang, Huanwei</creatorcontrib><creatorcontrib>Kang, Yao</creatorcontrib><creatorcontrib>Liang, Feng</creatorcontrib><title>Dense binary Fe–Cu sites promoting CO2 utilization enable highly reversible hybrid Na–CO2 batteries</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>High-performance and low-cost catalysts are particularly desirable for the exploitation of practical low-overpotential Na–CO2 batteries with protracted cyclability. Herein, a well-defined morphology of nitrogen-rich graphitic carbon frameworks with dense bimetallic active sites (Fe–Cu–N–C) was facilely prepared by introducing Fe3+ and Cu2+ to regulate in situ grown carbon nanotubes as an advanced catalyst toward hybrid Na–CO2 batteries. Through metal content tuning and carbon architecture altering, Fe–Cu–N–C proved to be dramatically more effective than Cu–N–C and Fe–N–C. As the cathodic catalyst of a hybrid Na–CO2 battery, Fe–Cu–N–C can facilitate the fast evolution and degradation of flocculent discharge products and achieve an excellent long-term cyclability with up to 1550 cycles (over 600 h), which makes it one of the greatest catalysts for hybrid Na–CO2/air batteries that have been reported to date. The observed outstanding battery performance is attributable to the cross-linked conductive framework affording a “highway” for accelerated electron transport and Na+/CO2 diffusion. Besides, the synergistic effects among defect-rich interfaces, Fe/Fe3C nanocrystals, and Fe–Nx and Cu–Nx sites derived from nitrogen atom doping enhance the catalytic activity. In addition, the possible growth and decomposition mechanisms of NaHCO3 products with different morphologies on Fe–N–C, Cu–N–C, and Fe–Cu–N–C electrodes were presented and discussed.</description><subject>Air batteries</subject><subject>Bimetals</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon nanotubes</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Cementite</subject><subject>Copper</subject><subject>Diffusion effects</subject><subject>Electron transport</subject><subject>Exploitation</subject><subject>Interfaces</subject><subject>Iron</subject><subject>Iron carbides</subject><subject>Morphology</subject><subject>Nanocrystals</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Nitrogen</subject><subject>Sodium bicarbonate</subject><subject>Synergistic effect</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9jk1OwzAQhS0EElXphhNYYh2YcX69RIECUkU3sK7seNK6hKTYDlJZcQduyEkwP2I2M3pP877H2CnCOUIqLwwGBUWB-HTAJgJySMpMFof_d1Uds5n3W4hTARRSTtj6inpPXNteuT2f0-f7Rz1ybwN5vnPD8xBsv-b1UvAx2M6-qWCHnlOvdEd8Y9ebbs8dvZLz9kfZa2cNv1ffOfFJqxDIWfIn7KhVnafZ356yx_n1Q32bLJY3d_XlItkhpiHJlYGs1AIQWwStDCnQOtOpLptolQRgotyQaZvKKNmmshBNjlkhMoNapFN29psby7-M5MNqO4yuj8iVyEuJooqc9AvgaVwQ</recordid><startdate>20211005</startdate><enddate>20211005</enddate><creator>Xu, Changfan</creator><creator>Zhan, Jing</creator><creator>Wang, Huanwei</creator><creator>Kang, Yao</creator><creator>Liang, Feng</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20211005</creationdate><title>Dense binary Fe–Cu sites promoting CO2 utilization enable highly reversible hybrid Na–CO2 batteries</title><author>Xu, Changfan ; Zhan, Jing ; Wang, Huanwei ; Kang, Yao ; Liang, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-5ad047b2011f10badea0bb4b3b7cad07e00d0bacedfc8da9f3962c514624d1b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air batteries</topic><topic>Bimetals</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon nanotubes</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Cementite</topic><topic>Copper</topic><topic>Diffusion effects</topic><topic>Electron transport</topic><topic>Exploitation</topic><topic>Interfaces</topic><topic>Iron</topic><topic>Iron carbides</topic><topic>Morphology</topic><topic>Nanocrystals</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Nitrogen</topic><topic>Sodium bicarbonate</topic><topic>Synergistic effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Changfan</creatorcontrib><creatorcontrib>Zhan, Jing</creatorcontrib><creatorcontrib>Wang, Huanwei</creatorcontrib><creatorcontrib>Kang, Yao</creatorcontrib><creatorcontrib>Liang, Feng</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Changfan</au><au>Zhan, Jing</au><au>Wang, Huanwei</au><au>Kang, Yao</au><au>Liang, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dense binary Fe–Cu sites promoting CO2 utilization enable highly reversible hybrid Na–CO2 batteries</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2021-10-05</date><risdate>2021</risdate><volume>9</volume><issue>38</issue><spage>22114</spage><epage>22128</epage><pages>22114-22128</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>High-performance and low-cost catalysts are particularly desirable for the exploitation of practical low-overpotential Na–CO2 batteries with protracted cyclability. Herein, a well-defined morphology of nitrogen-rich graphitic carbon frameworks with dense bimetallic active sites (Fe–Cu–N–C) was facilely prepared by introducing Fe3+ and Cu2+ to regulate in situ grown carbon nanotubes as an advanced catalyst toward hybrid Na–CO2 batteries. Through metal content tuning and carbon architecture altering, Fe–Cu–N–C proved to be dramatically more effective than Cu–N–C and Fe–N–C. As the cathodic catalyst of a hybrid Na–CO2 battery, Fe–Cu–N–C can facilitate the fast evolution and degradation of flocculent discharge products and achieve an excellent long-term cyclability with up to 1550 cycles (over 600 h), which makes it one of the greatest catalysts for hybrid Na–CO2/air batteries that have been reported to date. The observed outstanding battery performance is attributable to the cross-linked conductive framework affording a “highway” for accelerated electron transport and Na+/CO2 diffusion. Besides, the synergistic effects among defect-rich interfaces, Fe/Fe3C nanocrystals, and Fe–Nx and Cu–Nx sites derived from nitrogen atom doping enhance the catalytic activity. In addition, the possible growth and decomposition mechanisms of NaHCO3 products with different morphologies on Fe–N–C, Cu–N–C, and Fe–Cu–N–C electrodes were presented and discussed.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1ta06611k</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2021-10, Vol.9 (38), p.22114-22128
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2579128113
source Royal Society Of Chemistry Journals 2008-
subjects Air batteries
Bimetals
Carbon
Carbon dioxide
Carbon nanotubes
Catalysts
Catalytic activity
Cementite
Copper
Diffusion effects
Electron transport
Exploitation
Interfaces
Iron
Iron carbides
Morphology
Nanocrystals
Nanotechnology
Nanotubes
Nitrogen
Sodium bicarbonate
Synergistic effect
title Dense binary Fe–Cu sites promoting CO2 utilization enable highly reversible hybrid Na–CO2 batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A37%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dense%20binary%20Fe%E2%80%93Cu%20sites%20promoting%20CO2%20utilization%20enable%20highly%20reversible%20hybrid%20Na%E2%80%93CO2%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Xu,%20Changfan&rft.date=2021-10-05&rft.volume=9&rft.issue=38&rft.spage=22114&rft.epage=22128&rft.pages=22114-22128&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d1ta06611k&rft_dat=%3Cproquest%3E2579128113%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579128113&rft_id=info:pmid/&rfr_iscdi=true