Effect of Noncovalent Dispersion of Poly(Ethylene Oxide) in Columnar Polyether-Based Discotic Liquid Crystal on the Ionic Conductivity and Dynamics of Lithium Ions

The ionic conductivity of an electrolyte is represented by a product of carrier density, charge (electric), and ionic mobility. The overall goal of this study was to provide an insight into the influence of lithium ion conductivity and dynamic when a continuous discotic liquid crystal (DLC) matrix o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystals (Basel) 2019-12, Vol.9 (12), p.627
Hauptverfasser: Hwang, Jih-Dar, Chen, Po-Ying, Ding, Shang-Wu, Ong, Chi Wi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 627
container_title Crystals (Basel)
container_volume 9
creator Hwang, Jih-Dar
Chen, Po-Ying
Ding, Shang-Wu
Ong, Chi Wi
description The ionic conductivity of an electrolyte is represented by a product of carrier density, charge (electric), and ionic mobility. The overall goal of this study was to provide an insight into the influence of lithium ion conductivity and dynamic when a continuous discotic liquid crystal (DLC) matrix of hexaazatrinapthylene-polyether, HATN-TEG-1, is doped with a small amount of polyethylene oxide (PEO, 5% of MW 8000). The favorable non-covalent interactions between PEO and the DLC triethylene glycol side-chains is supported by the maintenance of the mesophase. The lithium ionic conductivity of HATN-TEG-1 was found to be 1.1 × 10−6 S cm−1, which is better than the corresponding HATN-TEG-1-5%PEO-8000 with a value of 6.06 × 10−7 S cm−1. These results are further supported by the dynamics of the lithium ions in HATN-TEG-1 and HATN-TEG-1-5%PEO-8000 as characterized by 7Li, and 1H NMR spin-lattice relaxation time and self-diffusion coefficient measurements. Though the additional PEO was found to increase the ion carriers, the significant lowering of the ionic conductivity may be attributed to the more pronounced decrease of the mobility of the ionic part when the HATN-TEG-1 matrix is dispersed with PEO. This finding indicates that the doping of 5% PEO onto the matrix of HATN-TEG-1 DLC has an adverse effect on both its diffusion rate and ion conductivity.
doi_str_mv 10.3390/cryst9120627
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2579126634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2579126634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-8f287706629fcba38d0024a45c82cd902ca771abfdadc8dff5730d1232240dc63</originalsourceid><addsrcrecordid>eNpNkUtOwzAQhi0EEhV0xwEssQGJgGMncbqEUKBSRFnAOnL9UF0ldms7FTkPF8WhLDqbGen_5g3AVYruCZmhB-4GH2YpRgWmJ2CCESVJRnJ8ehSfg6n3GxSNFojSdAJ-5kpJHqBV8N0abveslSbAZ-230nltzah82Ha4mYf1EDUJl99ayFuoDaxs23eGuT9AhrV0yRPzUozp3AbNYa13vRawGmdjLYzlIgUX1kStskb0POi9DgNkJmYNhnWa-7FlrcNa992I-ktwpljr5fTfX4Cvl_ln9ZbUy9dF9VgnnKA0JKXCJaWoKPBM8RUjpUAIZyzLeYm5mCHMWVyZrZRggpdCqZwSJFJMMM6Q4AW5ANeHultnd730odnY3pnYssE5jactCpJF6u5AcWe9d1I1W6c75oYmRc34ieb4E-QXxcp-uQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579126634</pqid></control><display><type>article</type><title>Effect of Noncovalent Dispersion of Poly(Ethylene Oxide) in Columnar Polyether-Based Discotic Liquid Crystal on the Ionic Conductivity and Dynamics of Lithium Ions</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hwang, Jih-Dar ; Chen, Po-Ying ; Ding, Shang-Wu ; Ong, Chi Wi</creator><creatorcontrib>Hwang, Jih-Dar ; Chen, Po-Ying ; Ding, Shang-Wu ; Ong, Chi Wi</creatorcontrib><description>The ionic conductivity of an electrolyte is represented by a product of carrier density, charge (electric), and ionic mobility. The overall goal of this study was to provide an insight into the influence of lithium ion conductivity and dynamic when a continuous discotic liquid crystal (DLC) matrix of hexaazatrinapthylene-polyether, HATN-TEG-1, is doped with a small amount of polyethylene oxide (PEO, 5% of MW 8000). The favorable non-covalent interactions between PEO and the DLC triethylene glycol side-chains is supported by the maintenance of the mesophase. The lithium ionic conductivity of HATN-TEG-1 was found to be 1.1 × 10−6 S cm−1, which is better than the corresponding HATN-TEG-1-5%PEO-8000 with a value of 6.06 × 10−7 S cm−1. These results are further supported by the dynamics of the lithium ions in HATN-TEG-1 and HATN-TEG-1-5%PEO-8000 as characterized by 7Li, and 1H NMR spin-lattice relaxation time and self-diffusion coefficient measurements. Though the additional PEO was found to increase the ion carriers, the significant lowering of the ionic conductivity may be attributed to the more pronounced decrease of the mobility of the ionic part when the HATN-TEG-1 matrix is dispersed with PEO. This finding indicates that the doping of 5% PEO onto the matrix of HATN-TEG-1 DLC has an adverse effect on both its diffusion rate and ion conductivity.</description><identifier>ISSN: 2073-4352</identifier><identifier>EISSN: 2073-4352</identifier><identifier>DOI: 10.3390/cryst9120627</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Carrier density ; Charge density ; Current carriers ; Diffusion coefficient ; Diffusion effects ; Diffusion rate ; Dispersion ; Electrolytes ; Ethylene oxide ; Ion currents ; Ionic mobility ; Ions ; Liquid crystals ; Lithium ; Lithium ions ; Lithium isotopes ; NMR ; Nuclear magnetic resonance ; Polyethylene ; Polyethylene oxide ; Polymer blends ; Polyvinyl alcohol ; Relaxation time ; Self diffusion ; Spectrum analysis ; Spin-lattice relaxation ; Triethylene glycol</subject><ispartof>Crystals (Basel), 2019-12, Vol.9 (12), p.627</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-8f287706629fcba38d0024a45c82cd902ca771abfdadc8dff5730d1232240dc63</citedby><cites>FETCH-LOGICAL-c301t-8f287706629fcba38d0024a45c82cd902ca771abfdadc8dff5730d1232240dc63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,27905,27906</link.rule.ids></links><search><creatorcontrib>Hwang, Jih-Dar</creatorcontrib><creatorcontrib>Chen, Po-Ying</creatorcontrib><creatorcontrib>Ding, Shang-Wu</creatorcontrib><creatorcontrib>Ong, Chi Wi</creatorcontrib><title>Effect of Noncovalent Dispersion of Poly(Ethylene Oxide) in Columnar Polyether-Based Discotic Liquid Crystal on the Ionic Conductivity and Dynamics of Lithium Ions</title><title>Crystals (Basel)</title><description>The ionic conductivity of an electrolyte is represented by a product of carrier density, charge (electric), and ionic mobility. The overall goal of this study was to provide an insight into the influence of lithium ion conductivity and dynamic when a continuous discotic liquid crystal (DLC) matrix of hexaazatrinapthylene-polyether, HATN-TEG-1, is doped with a small amount of polyethylene oxide (PEO, 5% of MW 8000). The favorable non-covalent interactions between PEO and the DLC triethylene glycol side-chains is supported by the maintenance of the mesophase. The lithium ionic conductivity of HATN-TEG-1 was found to be 1.1 × 10−6 S cm−1, which is better than the corresponding HATN-TEG-1-5%PEO-8000 with a value of 6.06 × 10−7 S cm−1. These results are further supported by the dynamics of the lithium ions in HATN-TEG-1 and HATN-TEG-1-5%PEO-8000 as characterized by 7Li, and 1H NMR spin-lattice relaxation time and self-diffusion coefficient measurements. Though the additional PEO was found to increase the ion carriers, the significant lowering of the ionic conductivity may be attributed to the more pronounced decrease of the mobility of the ionic part when the HATN-TEG-1 matrix is dispersed with PEO. This finding indicates that the doping of 5% PEO onto the matrix of HATN-TEG-1 DLC has an adverse effect on both its diffusion rate and ion conductivity.</description><subject>Carrier density</subject><subject>Charge density</subject><subject>Current carriers</subject><subject>Diffusion coefficient</subject><subject>Diffusion effects</subject><subject>Diffusion rate</subject><subject>Dispersion</subject><subject>Electrolytes</subject><subject>Ethylene oxide</subject><subject>Ion currents</subject><subject>Ionic mobility</subject><subject>Ions</subject><subject>Liquid crystals</subject><subject>Lithium</subject><subject>Lithium ions</subject><subject>Lithium isotopes</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Polyethylene</subject><subject>Polyethylene oxide</subject><subject>Polymer blends</subject><subject>Polyvinyl alcohol</subject><subject>Relaxation time</subject><subject>Self diffusion</subject><subject>Spectrum analysis</subject><subject>Spin-lattice relaxation</subject><subject>Triethylene glycol</subject><issn>2073-4352</issn><issn>2073-4352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkUtOwzAQhi0EEhV0xwEssQGJgGMncbqEUKBSRFnAOnL9UF0ldms7FTkPF8WhLDqbGen_5g3AVYruCZmhB-4GH2YpRgWmJ2CCESVJRnJ8ehSfg6n3GxSNFojSdAJ-5kpJHqBV8N0abveslSbAZ-230nltzah82Ha4mYf1EDUJl99ayFuoDaxs23eGuT9AhrV0yRPzUozp3AbNYa13vRawGmdjLYzlIgUX1kStskb0POi9DgNkJmYNhnWa-7FlrcNa992I-ktwpljr5fTfX4Cvl_ln9ZbUy9dF9VgnnKA0JKXCJaWoKPBM8RUjpUAIZyzLeYm5mCHMWVyZrZRggpdCqZwSJFJMMM6Q4AW5ANeHultnd730odnY3pnYssE5jactCpJF6u5AcWe9d1I1W6c75oYmRc34ieb4E-QXxcp-uQ</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Hwang, Jih-Dar</creator><creator>Chen, Po-Ying</creator><creator>Ding, Shang-Wu</creator><creator>Ong, Chi Wi</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20191201</creationdate><title>Effect of Noncovalent Dispersion of Poly(Ethylene Oxide) in Columnar Polyether-Based Discotic Liquid Crystal on the Ionic Conductivity and Dynamics of Lithium Ions</title><author>Hwang, Jih-Dar ; Chen, Po-Ying ; Ding, Shang-Wu ; Ong, Chi Wi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-8f287706629fcba38d0024a45c82cd902ca771abfdadc8dff5730d1232240dc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carrier density</topic><topic>Charge density</topic><topic>Current carriers</topic><topic>Diffusion coefficient</topic><topic>Diffusion effects</topic><topic>Diffusion rate</topic><topic>Dispersion</topic><topic>Electrolytes</topic><topic>Ethylene oxide</topic><topic>Ion currents</topic><topic>Ionic mobility</topic><topic>Ions</topic><topic>Liquid crystals</topic><topic>Lithium</topic><topic>Lithium ions</topic><topic>Lithium isotopes</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Polyethylene</topic><topic>Polyethylene oxide</topic><topic>Polymer blends</topic><topic>Polyvinyl alcohol</topic><topic>Relaxation time</topic><topic>Self diffusion</topic><topic>Spectrum analysis</topic><topic>Spin-lattice relaxation</topic><topic>Triethylene glycol</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Jih-Dar</creatorcontrib><creatorcontrib>Chen, Po-Ying</creatorcontrib><creatorcontrib>Ding, Shang-Wu</creatorcontrib><creatorcontrib>Ong, Chi Wi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Crystals (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, Jih-Dar</au><au>Chen, Po-Ying</au><au>Ding, Shang-Wu</au><au>Ong, Chi Wi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Noncovalent Dispersion of Poly(Ethylene Oxide) in Columnar Polyether-Based Discotic Liquid Crystal on the Ionic Conductivity and Dynamics of Lithium Ions</atitle><jtitle>Crystals (Basel)</jtitle><date>2019-12-01</date><risdate>2019</risdate><volume>9</volume><issue>12</issue><spage>627</spage><pages>627-</pages><issn>2073-4352</issn><eissn>2073-4352</eissn><abstract>The ionic conductivity of an electrolyte is represented by a product of carrier density, charge (electric), and ionic mobility. The overall goal of this study was to provide an insight into the influence of lithium ion conductivity and dynamic when a continuous discotic liquid crystal (DLC) matrix of hexaazatrinapthylene-polyether, HATN-TEG-1, is doped with a small amount of polyethylene oxide (PEO, 5% of MW 8000). The favorable non-covalent interactions between PEO and the DLC triethylene glycol side-chains is supported by the maintenance of the mesophase. The lithium ionic conductivity of HATN-TEG-1 was found to be 1.1 × 10−6 S cm−1, which is better than the corresponding HATN-TEG-1-5%PEO-8000 with a value of 6.06 × 10−7 S cm−1. These results are further supported by the dynamics of the lithium ions in HATN-TEG-1 and HATN-TEG-1-5%PEO-8000 as characterized by 7Li, and 1H NMR spin-lattice relaxation time and self-diffusion coefficient measurements. Though the additional PEO was found to increase the ion carriers, the significant lowering of the ionic conductivity may be attributed to the more pronounced decrease of the mobility of the ionic part when the HATN-TEG-1 matrix is dispersed with PEO. This finding indicates that the doping of 5% PEO onto the matrix of HATN-TEG-1 DLC has an adverse effect on both its diffusion rate and ion conductivity.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/cryst9120627</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4352
ispartof Crystals (Basel), 2019-12, Vol.9 (12), p.627
issn 2073-4352
2073-4352
language eng
recordid cdi_proquest_journals_2579126634
source DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Carrier density
Charge density
Current carriers
Diffusion coefficient
Diffusion effects
Diffusion rate
Dispersion
Electrolytes
Ethylene oxide
Ion currents
Ionic mobility
Ions
Liquid crystals
Lithium
Lithium ions
Lithium isotopes
NMR
Nuclear magnetic resonance
Polyethylene
Polyethylene oxide
Polymer blends
Polyvinyl alcohol
Relaxation time
Self diffusion
Spectrum analysis
Spin-lattice relaxation
Triethylene glycol
title Effect of Noncovalent Dispersion of Poly(Ethylene Oxide) in Columnar Polyether-Based Discotic Liquid Crystal on the Ionic Conductivity and Dynamics of Lithium Ions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T09%3A29%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Noncovalent%20Dispersion%20of%20Poly(Ethylene%20Oxide)%20in%20Columnar%20Polyether-Based%20Discotic%20Liquid%20Crystal%20on%20the%20Ionic%20Conductivity%20and%20Dynamics%20of%20Lithium%20Ions&rft.jtitle=Crystals%20(Basel)&rft.au=Hwang,%20Jih-Dar&rft.date=2019-12-01&rft.volume=9&rft.issue=12&rft.spage=627&rft.pages=627-&rft.issn=2073-4352&rft.eissn=2073-4352&rft_id=info:doi/10.3390/cryst9120627&rft_dat=%3Cproquest_cross%3E2579126634%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579126634&rft_id=info:pmid/&rfr_iscdi=true