Experimental noise in small‐angle scattering can be assessed using the Bayesian indirect Fourier transformation
Small‐angle X‐ray and neutron scattering are widely used to investigate soft matter and biophysical systems. The experimental errors are essential when assessing how well a hypothesized model fits the data. Likewise, they are important when weights are assigned to multiple data sets used to refine t...
Gespeichert in:
Veröffentlicht in: | Journal of applied crystallography 2021-10, Vol.54 (5), p.1281-1289 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1289 |
---|---|
container_issue | 5 |
container_start_page | 1281 |
container_title | Journal of applied crystallography |
container_volume | 54 |
creator | Larsen, Andreas Haahr Pedersen, Martin Cramer |
description | Small‐angle X‐ray and neutron scattering are widely used to investigate soft matter and biophysical systems. The experimental errors are essential when assessing how well a hypothesized model fits the data. Likewise, they are important when weights are assigned to multiple data sets used to refine the same model. Therefore, it is problematic when experimental errors are over‐ or underestimated. A method is presented, using Bayesian indirect Fourier transformation for small‐angle scattering data, to assess whether or not a given small‐angle scattering data set has over‐ or underestimated experimental errors. The method is effective on both simulated and experimental data, and can be used to assess and rescale the errors accordingly. Even if the estimated experimental errors are appropriate, it is ambiguous whether or not a model fits sufficiently well, as the `true' reduced χ2 of the data is not necessarily unity. This is particularly relevant for approaches where overfitting is an inherent challenge, such as reweighting of a simulated molecular dynamics trajectory against small‐angle scattering data or ab initio modelling. Using the outlined method, it is shown that one can determine what reduced χ2 to aim for when fitting a model against small‐angle scattering data. The method is easily accessible via the web interface BayesApp.
It is found that the Bayesian indirect Fourier transformation algorithm can accurately estimate the noise level of small‐angle scattering data. This can be used to (i) evaluate whether experimental errors are over‐ or underestimated, (ii) rescale the experimental error estimates, and (iii) determine what reduced χ2 to aim for in model refinement. |
doi_str_mv | 10.1107/S1600576721006877 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2579042625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2579042625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2533-3480f38f977733dad181f36e76ebc689a68b493c78db70880b8a5ccf9d5457453</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKsP4C7guppMJj-z1NKqpSD4sx4ymTs1ZZppkxTtzkfwGX0SM9SF4EK4cC_nfucmHITOKbmklMirJyoI4VLIjBIilJQHaNBLo147_DUfo5MQloTQhGYDtJm8r8HbFbioW-w6GwBbh8NKt-3Xx6d2ixZwMDrGRLkFNtrhCrAOAVLVeBt6Nb4CvtE7CDatrautBxPxtNt6Cx5Hr11oOr_S0XbuFB01ug1w9tOH6GU6eR7fjeYPt_fj6_nIZJyxEcsVaZhqCiklY7WuqaINEyAFVEaoQgtV5QUzUtWVJEqRSmluTFPUPOcy52yILvZ3177bbCHEcpn-49KTZcZlQfJMZD1F95TxXQgemnKd0tB-V1JS9smWf5JNnmLvebMt7P43lLPxYzabc0IZ-waznX2j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579042625</pqid></control><display><type>article</type><title>Experimental noise in small‐angle scattering can be assessed using the Bayesian indirect Fourier transformation</title><source>Access via Wiley Online Library</source><source>Alma/SFX Local Collection</source><creator>Larsen, Andreas Haahr ; Pedersen, Martin Cramer</creator><creatorcontrib>Larsen, Andreas Haahr ; Pedersen, Martin Cramer</creatorcontrib><description>Small‐angle X‐ray and neutron scattering are widely used to investigate soft matter and biophysical systems. The experimental errors are essential when assessing how well a hypothesized model fits the data. Likewise, they are important when weights are assigned to multiple data sets used to refine the same model. Therefore, it is problematic when experimental errors are over‐ or underestimated. A method is presented, using Bayesian indirect Fourier transformation for small‐angle scattering data, to assess whether or not a given small‐angle scattering data set has over‐ or underestimated experimental errors. The method is effective on both simulated and experimental data, and can be used to assess and rescale the errors accordingly. Even if the estimated experimental errors are appropriate, it is ambiguous whether or not a model fits sufficiently well, as the `true' reduced χ2 of the data is not necessarily unity. This is particularly relevant for approaches where overfitting is an inherent challenge, such as reweighting of a simulated molecular dynamics trajectory against small‐angle scattering data or ab initio modelling. Using the outlined method, it is shown that one can determine what reduced χ2 to aim for when fitting a model against small‐angle scattering data. The method is easily accessible via the web interface BayesApp.
It is found that the Bayesian indirect Fourier transformation algorithm can accurately estimate the noise level of small‐angle scattering data. This can be used to (i) evaluate whether experimental errors are over‐ or underestimated, (ii) rescale the experimental error estimates, and (iii) determine what reduced χ2 to aim for in model refinement.</description><identifier>ISSN: 1600-5767</identifier><identifier>ISSN: 0021-8898</identifier><identifier>EISSN: 1600-5767</identifier><identifier>DOI: 10.1107/S1600576721006877</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Bayesian analysis ; Bayesian indirect Fourier transformation ; BIFT ; Chi-square test ; Datasets ; experimental noise ; Fourier transforms ; model refinement ; Molecular dynamics ; Neutron scattering ; small‐angle scattering</subject><ispartof>Journal of applied crystallography, 2021-10, Vol.54 (5), p.1281-1289</ispartof><rights>2021 Larsen and Pedersen. published by IUCr Journals.</rights><rights>Copyright Blackwell Publishing Ltd. Oct 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2533-3480f38f977733dad181f36e76ebc689a68b493c78db70880b8a5ccf9d5457453</citedby><cites>FETCH-LOGICAL-c2533-3480f38f977733dad181f36e76ebc689a68b493c78db70880b8a5ccf9d5457453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS1600576721006877$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS1600576721006877$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Larsen, Andreas Haahr</creatorcontrib><creatorcontrib>Pedersen, Martin Cramer</creatorcontrib><title>Experimental noise in small‐angle scattering can be assessed using the Bayesian indirect Fourier transformation</title><title>Journal of applied crystallography</title><description>Small‐angle X‐ray and neutron scattering are widely used to investigate soft matter and biophysical systems. The experimental errors are essential when assessing how well a hypothesized model fits the data. Likewise, they are important when weights are assigned to multiple data sets used to refine the same model. Therefore, it is problematic when experimental errors are over‐ or underestimated. A method is presented, using Bayesian indirect Fourier transformation for small‐angle scattering data, to assess whether or not a given small‐angle scattering data set has over‐ or underestimated experimental errors. The method is effective on both simulated and experimental data, and can be used to assess and rescale the errors accordingly. Even if the estimated experimental errors are appropriate, it is ambiguous whether or not a model fits sufficiently well, as the `true' reduced χ2 of the data is not necessarily unity. This is particularly relevant for approaches where overfitting is an inherent challenge, such as reweighting of a simulated molecular dynamics trajectory against small‐angle scattering data or ab initio modelling. Using the outlined method, it is shown that one can determine what reduced χ2 to aim for when fitting a model against small‐angle scattering data. The method is easily accessible via the web interface BayesApp.
It is found that the Bayesian indirect Fourier transformation algorithm can accurately estimate the noise level of small‐angle scattering data. This can be used to (i) evaluate whether experimental errors are over‐ or underestimated, (ii) rescale the experimental error estimates, and (iii) determine what reduced χ2 to aim for in model refinement.</description><subject>Bayesian analysis</subject><subject>Bayesian indirect Fourier transformation</subject><subject>BIFT</subject><subject>Chi-square test</subject><subject>Datasets</subject><subject>experimental noise</subject><subject>Fourier transforms</subject><subject>model refinement</subject><subject>Molecular dynamics</subject><subject>Neutron scattering</subject><subject>small‐angle scattering</subject><issn>1600-5767</issn><issn>0021-8898</issn><issn>1600-5767</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWKsP4C7guppMJj-z1NKqpSD4sx4ymTs1ZZppkxTtzkfwGX0SM9SF4EK4cC_nfucmHITOKbmklMirJyoI4VLIjBIilJQHaNBLo147_DUfo5MQloTQhGYDtJm8r8HbFbioW-w6GwBbh8NKt-3Xx6d2ixZwMDrGRLkFNtrhCrAOAVLVeBt6Nb4CvtE7CDatrautBxPxtNt6Cx5Hr11oOr_S0XbuFB01ug1w9tOH6GU6eR7fjeYPt_fj6_nIZJyxEcsVaZhqCiklY7WuqaINEyAFVEaoQgtV5QUzUtWVJEqRSmluTFPUPOcy52yILvZ3177bbCHEcpn-49KTZcZlQfJMZD1F95TxXQgemnKd0tB-V1JS9smWf5JNnmLvebMt7P43lLPxYzabc0IZ-waznX2j</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Larsen, Andreas Haahr</creator><creator>Pedersen, Martin Cramer</creator><general>International Union of Crystallography</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>202110</creationdate><title>Experimental noise in small‐angle scattering can be assessed using the Bayesian indirect Fourier transformation</title><author>Larsen, Andreas Haahr ; Pedersen, Martin Cramer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2533-3480f38f977733dad181f36e76ebc689a68b493c78db70880b8a5ccf9d5457453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bayesian analysis</topic><topic>Bayesian indirect Fourier transformation</topic><topic>BIFT</topic><topic>Chi-square test</topic><topic>Datasets</topic><topic>experimental noise</topic><topic>Fourier transforms</topic><topic>model refinement</topic><topic>Molecular dynamics</topic><topic>Neutron scattering</topic><topic>small‐angle scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Larsen, Andreas Haahr</creatorcontrib><creatorcontrib>Pedersen, Martin Cramer</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied crystallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Larsen, Andreas Haahr</au><au>Pedersen, Martin Cramer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental noise in small‐angle scattering can be assessed using the Bayesian indirect Fourier transformation</atitle><jtitle>Journal of applied crystallography</jtitle><date>2021-10</date><risdate>2021</risdate><volume>54</volume><issue>5</issue><spage>1281</spage><epage>1289</epage><pages>1281-1289</pages><issn>1600-5767</issn><issn>0021-8898</issn><eissn>1600-5767</eissn><abstract>Small‐angle X‐ray and neutron scattering are widely used to investigate soft matter and biophysical systems. The experimental errors are essential when assessing how well a hypothesized model fits the data. Likewise, they are important when weights are assigned to multiple data sets used to refine the same model. Therefore, it is problematic when experimental errors are over‐ or underestimated. A method is presented, using Bayesian indirect Fourier transformation for small‐angle scattering data, to assess whether or not a given small‐angle scattering data set has over‐ or underestimated experimental errors. The method is effective on both simulated and experimental data, and can be used to assess and rescale the errors accordingly. Even if the estimated experimental errors are appropriate, it is ambiguous whether or not a model fits sufficiently well, as the `true' reduced χ2 of the data is not necessarily unity. This is particularly relevant for approaches where overfitting is an inherent challenge, such as reweighting of a simulated molecular dynamics trajectory against small‐angle scattering data or ab initio modelling. Using the outlined method, it is shown that one can determine what reduced χ2 to aim for when fitting a model against small‐angle scattering data. The method is easily accessible via the web interface BayesApp.
It is found that the Bayesian indirect Fourier transformation algorithm can accurately estimate the noise level of small‐angle scattering data. This can be used to (i) evaluate whether experimental errors are over‐ or underestimated, (ii) rescale the experimental error estimates, and (iii) determine what reduced χ2 to aim for in model refinement.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><doi>10.1107/S1600576721006877</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1600-5767 |
ispartof | Journal of applied crystallography, 2021-10, Vol.54 (5), p.1281-1289 |
issn | 1600-5767 0021-8898 1600-5767 |
language | eng |
recordid | cdi_proquest_journals_2579042625 |
source | Access via Wiley Online Library; Alma/SFX Local Collection |
subjects | Bayesian analysis Bayesian indirect Fourier transformation BIFT Chi-square test Datasets experimental noise Fourier transforms model refinement Molecular dynamics Neutron scattering small‐angle scattering |
title | Experimental noise in small‐angle scattering can be assessed using the Bayesian indirect Fourier transformation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A58%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20noise%20in%20small%E2%80%90angle%20scattering%20can%20be%20assessed%20using%20the%20Bayesian%20indirect%20Fourier%20transformation&rft.jtitle=Journal%20of%20applied%20crystallography&rft.au=Larsen,%20Andreas%20Haahr&rft.date=2021-10&rft.volume=54&rft.issue=5&rft.spage=1281&rft.epage=1289&rft.pages=1281-1289&rft.issn=1600-5767&rft.eissn=1600-5767&rft_id=info:doi/10.1107/S1600576721006877&rft_dat=%3Cproquest_cross%3E2579042625%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579042625&rft_id=info:pmid/&rfr_iscdi=true |