Underwater image segmentation in the wild using deep learning

Image segmentation is an important step in many computer vision and image processing algorithms. It is often adopted in tasks such as object detection, classification, and tracking. The segmentation of underwater images is a challenging problem as the water and particles present in the water scatter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Brazilian Computer Society 2021-12, Vol.27 (1), Article 12
Hauptverfasser: Drews-Jr, Paulo, Souza, Isadora de, Maurell, Igor P., Protas, Eglen V., C. Botelho, Silvia S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Journal of the Brazilian Computer Society
container_volume 27
creator Drews-Jr, Paulo
Souza, Isadora de
Maurell, Igor P.
Protas, Eglen V.
C. Botelho, Silvia S.
description Image segmentation is an important step in many computer vision and image processing algorithms. It is often adopted in tasks such as object detection, classification, and tracking. The segmentation of underwater images is a challenging problem as the water and particles present in the water scatter and absorb the light rays. These effects make the application of traditional segmentation methods cumbersome. Besides that, to use the state-of-the-art segmentation methods to face this problem, which are based on deep learning, an underwater image segmentation dataset must be proposed. So, in this paper, we develop a dataset of real underwater images, and some other combinations using simulated data, to allow the training of two of the best deep learning segmentation architectures, aiming to deal with segmentation of underwater images in the wild. In addition to models trained in these datasets, fine-tuning and image restoration strategies are explored too. To do a more meaningful evaluation, all the models are compared in the testing set of real underwater images. We show that methods obtain impressive results, mainly when trained with our real dataset, comparing with manually segmented ground truth, even using a relatively small number of labeled underwater training images.
doi_str_mv 10.1186/s13173-021-00117-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2578915121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578915121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2787-8701db414dad3efe210621320ced1ae92aa056a8f27ecf19134dcad23f448f523</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMoWFf_gKeA5-hMkjbZgwdZ_IIFL-45xGZau-yma9Jl8d9breDN0zDwPu8wD2OXCNeItrrJqNAoARIFAKIR5ogVWBkrtAV9zApA0KIqAU7ZWc5rAAlaQcFuVzFQOviBEu-2viWeqd1SHPzQ9ZF3kQ_vxA_dJvB97mLLA9GOb8inOG7n7KTxm0wXv3PGVg_3r4snsXx5fF7cLUUtjTXCGsDwplEHHxQ1JBEqiUpCTQE9zaX3UFbeNtJQ3eAclQ61D1I1WtumlGrGrqbeXeo_9pQHt-73KY4nnSyNnWOJY9-MySlVpz7nRI3bpfGn9OkQ3LcmN2lyoyb3o8mZEVITlMdwbCn9Vf9DfQFCrWnS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578915121</pqid></control><display><type>article</type><title>Underwater image segmentation in the wild using deep learning</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Drews-Jr, Paulo ; Souza, Isadora de ; Maurell, Igor P. ; Protas, Eglen V. ; C. Botelho, Silvia S.</creator><creatorcontrib>Drews-Jr, Paulo ; Souza, Isadora de ; Maurell, Igor P. ; Protas, Eglen V. ; C. Botelho, Silvia S.</creatorcontrib><description>Image segmentation is an important step in many computer vision and image processing algorithms. It is often adopted in tasks such as object detection, classification, and tracking. The segmentation of underwater images is a challenging problem as the water and particles present in the water scatter and absorb the light rays. These effects make the application of traditional segmentation methods cumbersome. Besides that, to use the state-of-the-art segmentation methods to face this problem, which are based on deep learning, an underwater image segmentation dataset must be proposed. So, in this paper, we develop a dataset of real underwater images, and some other combinations using simulated data, to allow the training of two of the best deep learning segmentation architectures, aiming to deal with segmentation of underwater images in the wild. In addition to models trained in these datasets, fine-tuning and image restoration strategies are explored too. To do a more meaningful evaluation, all the models are compared in the testing set of real underwater images. We show that methods obtain impressive results, mainly when trained with our real dataset, comparing with manually segmented ground truth, even using a relatively small number of labeled underwater training images.</description><identifier>ISSN: 0104-6500</identifier><identifier>EISSN: 1678-4804</identifier><identifier>DOI: 10.1186/s13173-021-00117-7</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Computer Science ; Computer System Implementation ; Computer vision ; Data Structures ; Datasets ; Deep learning ; Image classification ; Image processing ; Image restoration ; Image segmentation ; Machine learning ; Object recognition ; Operating Systems ; Restoration strategies ; Simulation and Modeling ; Training ; Underwater</subject><ispartof>Journal of the Brazilian Computer Society, 2021-12, Vol.27 (1), Article 12</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2787-8701db414dad3efe210621320ced1ae92aa056a8f27ecf19134dcad23f448f523</citedby><cites>FETCH-LOGICAL-c2787-8701db414dad3efe210621320ced1ae92aa056a8f27ecf19134dcad23f448f523</cites><orcidid>0000-0002-4376-9544</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1186/s13173-021-00117-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1186/s13173-021-00117-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,27906,27907,41102,41470,42171,42539,51301,51558</link.rule.ids></links><search><creatorcontrib>Drews-Jr, Paulo</creatorcontrib><creatorcontrib>Souza, Isadora de</creatorcontrib><creatorcontrib>Maurell, Igor P.</creatorcontrib><creatorcontrib>Protas, Eglen V.</creatorcontrib><creatorcontrib>C. Botelho, Silvia S.</creatorcontrib><title>Underwater image segmentation in the wild using deep learning</title><title>Journal of the Brazilian Computer Society</title><addtitle>J Braz Comput Soc</addtitle><description>Image segmentation is an important step in many computer vision and image processing algorithms. It is often adopted in tasks such as object detection, classification, and tracking. The segmentation of underwater images is a challenging problem as the water and particles present in the water scatter and absorb the light rays. These effects make the application of traditional segmentation methods cumbersome. Besides that, to use the state-of-the-art segmentation methods to face this problem, which are based on deep learning, an underwater image segmentation dataset must be proposed. So, in this paper, we develop a dataset of real underwater images, and some other combinations using simulated data, to allow the training of two of the best deep learning segmentation architectures, aiming to deal with segmentation of underwater images in the wild. In addition to models trained in these datasets, fine-tuning and image restoration strategies are explored too. To do a more meaningful evaluation, all the models are compared in the testing set of real underwater images. We show that methods obtain impressive results, mainly when trained with our real dataset, comparing with manually segmented ground truth, even using a relatively small number of labeled underwater training images.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Computer System Implementation</subject><subject>Computer vision</subject><subject>Data Structures</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Image classification</subject><subject>Image processing</subject><subject>Image restoration</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Object recognition</subject><subject>Operating Systems</subject><subject>Restoration strategies</subject><subject>Simulation and Modeling</subject><subject>Training</subject><subject>Underwater</subject><issn>0104-6500</issn><issn>1678-4804</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LxDAQhoMoWFf_gKeA5-hMkjbZgwdZ_IIFL-45xGZau-yma9Jl8d9breDN0zDwPu8wD2OXCNeItrrJqNAoARIFAKIR5ogVWBkrtAV9zApA0KIqAU7ZWc5rAAlaQcFuVzFQOviBEu-2viWeqd1SHPzQ9ZF3kQ_vxA_dJvB97mLLA9GOb8inOG7n7KTxm0wXv3PGVg_3r4snsXx5fF7cLUUtjTXCGsDwplEHHxQ1JBEqiUpCTQE9zaX3UFbeNtJQ3eAclQ61D1I1WtumlGrGrqbeXeo_9pQHt-73KY4nnSyNnWOJY9-MySlVpz7nRI3bpfGn9OkQ3LcmN2lyoyb3o8mZEVITlMdwbCn9Vf9DfQFCrWnS</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Drews-Jr, Paulo</creator><creator>Souza, Isadora de</creator><creator>Maurell, Igor P.</creator><creator>Protas, Eglen V.</creator><creator>C. Botelho, Silvia S.</creator><general>Springer London</general><general>Sociedade Brasileira de Computação</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-4376-9544</orcidid></search><sort><creationdate>20211201</creationdate><title>Underwater image segmentation in the wild using deep learning</title><author>Drews-Jr, Paulo ; Souza, Isadora de ; Maurell, Igor P. ; Protas, Eglen V. ; C. Botelho, Silvia S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2787-8701db414dad3efe210621320ced1ae92aa056a8f27ecf19134dcad23f448f523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Computer System Implementation</topic><topic>Computer vision</topic><topic>Data Structures</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Image classification</topic><topic>Image processing</topic><topic>Image restoration</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Object recognition</topic><topic>Operating Systems</topic><topic>Restoration strategies</topic><topic>Simulation and Modeling</topic><topic>Training</topic><topic>Underwater</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drews-Jr, Paulo</creatorcontrib><creatorcontrib>Souza, Isadora de</creatorcontrib><creatorcontrib>Maurell, Igor P.</creatorcontrib><creatorcontrib>Protas, Eglen V.</creatorcontrib><creatorcontrib>C. Botelho, Silvia S.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of the Brazilian Computer Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drews-Jr, Paulo</au><au>Souza, Isadora de</au><au>Maurell, Igor P.</au><au>Protas, Eglen V.</au><au>C. Botelho, Silvia S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Underwater image segmentation in the wild using deep learning</atitle><jtitle>Journal of the Brazilian Computer Society</jtitle><stitle>J Braz Comput Soc</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>27</volume><issue>1</issue><artnum>12</artnum><issn>0104-6500</issn><eissn>1678-4804</eissn><abstract>Image segmentation is an important step in many computer vision and image processing algorithms. It is often adopted in tasks such as object detection, classification, and tracking. The segmentation of underwater images is a challenging problem as the water and particles present in the water scatter and absorb the light rays. These effects make the application of traditional segmentation methods cumbersome. Besides that, to use the state-of-the-art segmentation methods to face this problem, which are based on deep learning, an underwater image segmentation dataset must be proposed. So, in this paper, we develop a dataset of real underwater images, and some other combinations using simulated data, to allow the training of two of the best deep learning segmentation architectures, aiming to deal with segmentation of underwater images in the wild. In addition to models trained in these datasets, fine-tuning and image restoration strategies are explored too. To do a more meaningful evaluation, all the models are compared in the testing set of real underwater images. We show that methods obtain impressive results, mainly when trained with our real dataset, comparing with manually segmented ground truth, even using a relatively small number of labeled underwater training images.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1186/s13173-021-00117-7</doi><orcidid>https://orcid.org/0000-0002-4376-9544</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0104-6500
ispartof Journal of the Brazilian Computer Society, 2021-12, Vol.27 (1), Article 12
issn 0104-6500
1678-4804
language eng
recordid cdi_proquest_journals_2578915121
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; SpringerLink Journals - AutoHoldings
subjects Algorithms
Computer Science
Computer System Implementation
Computer vision
Data Structures
Datasets
Deep learning
Image classification
Image processing
Image restoration
Image segmentation
Machine learning
Object recognition
Operating Systems
Restoration strategies
Simulation and Modeling
Training
Underwater
title Underwater image segmentation in the wild using deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A48%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Underwater%20image%20segmentation%20in%20the%20wild%20using%20deep%20learning&rft.jtitle=Journal%20of%20the%20Brazilian%20Computer%20Society&rft.au=Drews-Jr,%20Paulo&rft.date=2021-12-01&rft.volume=27&rft.issue=1&rft.artnum=12&rft.issn=0104-6500&rft.eissn=1678-4804&rft_id=info:doi/10.1186/s13173-021-00117-7&rft_dat=%3Cproquest_cross%3E2578915121%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578915121&rft_id=info:pmid/&rfr_iscdi=true