Locust bean gum‐polyvinyl alcohol hydrogels: Synthesis, characterization, swelling behaviors, and mathematical models

In this study, locust bean gum/polyvinyl alcohol (LBG/PVA) hydrogels were synthesized by the gel casting method without using toxic crosslinking agents. Infrared spectroscopy (FTIR), X‐ray diffraction (XRD), and thermogravimetric analysis (TGA) methods were used for characterization of the synthesiz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2022-01, Vol.139 (3), p.n/a
Hauptverfasser: Matar, Ghassan H., Andac, Muberra, Elmas, Aykut
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page
container_title Journal of applied polymer science
container_volume 139
creator Matar, Ghassan H.
Andac, Muberra
Elmas, Aykut
description In this study, locust bean gum/polyvinyl alcohol (LBG/PVA) hydrogels were synthesized by the gel casting method without using toxic crosslinking agents. Infrared spectroscopy (FTIR), X‐ray diffraction (XRD), and thermogravimetric analysis (TGA) methods were used for characterization of the synthesized hydrogels. Scanning electron microscopy (SEM) was used for observation surface morphology of the hydrogel and swelled hydrogels. The Swelling behavior of prepared hydrogels was investigated and the data were interpreted by various kinetic models. The prepared hydrogels showed pH and temperature‐responsive behavior. The maximum swelling ratio was evaluated as 607.72 at 37°C. The diffusional exponent values (n) were found as 0.5946, 0.5028, and 0.2785 at 4, 25, and 37°C, respectively. According to the n values, it was found that non‐Fickian diffusion dominates the swelling process. The obtained diffusion prediction curves were fitted to three different models: Higuchi, Peppas, and Elmas models. Among the results, Elmas model has better fits at 277 K and 298 K while Peppas model is better at 310 K. The results indicated that LBG/PVA hydrogels could be a candidate biomaterial for drug delivery applications.
doi_str_mv 10.1002/app.51498
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2578840169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578840169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2978-e4823771b44af0648df864266f9cbe8bd332851892542ba1ad7f5065d62bb88c3</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqWw4AaWWCE1re04icOuqviTKlEJWEeO4zSunDjYSauw4gickZNgCFs2M4v53hu9B8AlRnOMEFnwtp1HmKbsCEwwSpOAxoQdg4m_4YClaXQKzpzbIYRxhOIJOKyN6F0Hc8kbuO3rr4_P1uhhr5pBQ66FqYyG1VBYs5Xa3cDnoekq6ZSbQVFxy0UnrXrnnTLNDLqD1Fo1W-9W8b0y1lO8KWDNvcYPJbiGtSm80zk4Kbl28uJvT8Hr3e3L6iFYP90_rpbrQJA0YYGkjIRJgnNKeYliyoqSxZTEcZmKXLK8CEPCIsxSElGSc8yLpPS5oiImec6YCKfgavRtrXnrpeuynelt419mJEoYowjHqaeuR0pY45yVZdZaVXM7ZBhlP71mvtfst1fPLkb2oLQc_gez5WYzKr4BOnt8hQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578840169</pqid></control><display><type>article</type><title>Locust bean gum‐polyvinyl alcohol hydrogels: Synthesis, characterization, swelling behaviors, and mathematical models</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Matar, Ghassan H. ; Andac, Muberra ; Elmas, Aykut</creator><creatorcontrib>Matar, Ghassan H. ; Andac, Muberra ; Elmas, Aykut</creatorcontrib><description>In this study, locust bean gum/polyvinyl alcohol (LBG/PVA) hydrogels were synthesized by the gel casting method without using toxic crosslinking agents. Infrared spectroscopy (FTIR), X‐ray diffraction (XRD), and thermogravimetric analysis (TGA) methods were used for characterization of the synthesized hydrogels. Scanning electron microscopy (SEM) was used for observation surface morphology of the hydrogel and swelled hydrogels. The Swelling behavior of prepared hydrogels was investigated and the data were interpreted by various kinetic models. The prepared hydrogels showed pH and temperature‐responsive behavior. The maximum swelling ratio was evaluated as 607.72 at 37°C. The diffusional exponent values (n) were found as 0.5946, 0.5028, and 0.2785 at 4, 25, and 37°C, respectively. According to the n values, it was found that non‐Fickian diffusion dominates the swelling process. The obtained diffusion prediction curves were fitted to three different models: Higuchi, Peppas, and Elmas models. Among the results, Elmas model has better fits at 277 K and 298 K while Peppas model is better at 310 K. The results indicated that LBG/PVA hydrogels could be a candidate biomaterial for drug delivery applications.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.51498</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Biocompatibility ; Biomedical materials ; Crosslinking ; hydrogel ; Hydrogels ; Infrared analysis ; Locust bean gum ; Materials science ; Mathematical models ; Polymers ; Polyvinyl alcohol ; swelling kinetics ; Swelling ratio ; Synthesis ; theory and modeling ; Thermogravimetric analysis</subject><ispartof>Journal of applied polymer science, 2022-01, Vol.139 (3), p.n/a</ispartof><rights>2021 Wiley Periodicals LLC.</rights><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2978-e4823771b44af0648df864266f9cbe8bd332851892542ba1ad7f5065d62bb88c3</citedby><cites>FETCH-LOGICAL-c2978-e4823771b44af0648df864266f9cbe8bd332851892542ba1ad7f5065d62bb88c3</cites><orcidid>0000-0002-1753-5808 ; 0000-0001-7262-9762 ; 0000-0002-7721-4088</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.51498$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.51498$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Matar, Ghassan H.</creatorcontrib><creatorcontrib>Andac, Muberra</creatorcontrib><creatorcontrib>Elmas, Aykut</creatorcontrib><title>Locust bean gum‐polyvinyl alcohol hydrogels: Synthesis, characterization, swelling behaviors, and mathematical models</title><title>Journal of applied polymer science</title><description>In this study, locust bean gum/polyvinyl alcohol (LBG/PVA) hydrogels were synthesized by the gel casting method without using toxic crosslinking agents. Infrared spectroscopy (FTIR), X‐ray diffraction (XRD), and thermogravimetric analysis (TGA) methods were used for characterization of the synthesized hydrogels. Scanning electron microscopy (SEM) was used for observation surface morphology of the hydrogel and swelled hydrogels. The Swelling behavior of prepared hydrogels was investigated and the data were interpreted by various kinetic models. The prepared hydrogels showed pH and temperature‐responsive behavior. The maximum swelling ratio was evaluated as 607.72 at 37°C. The diffusional exponent values (n) were found as 0.5946, 0.5028, and 0.2785 at 4, 25, and 37°C, respectively. According to the n values, it was found that non‐Fickian diffusion dominates the swelling process. The obtained diffusion prediction curves were fitted to three different models: Higuchi, Peppas, and Elmas models. Among the results, Elmas model has better fits at 277 K and 298 K while Peppas model is better at 310 K. The results indicated that LBG/PVA hydrogels could be a candidate biomaterial for drug delivery applications.</description><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Crosslinking</subject><subject>hydrogel</subject><subject>Hydrogels</subject><subject>Infrared analysis</subject><subject>Locust bean gum</subject><subject>Materials science</subject><subject>Mathematical models</subject><subject>Polymers</subject><subject>Polyvinyl alcohol</subject><subject>swelling kinetics</subject><subject>Swelling ratio</subject><subject>Synthesis</subject><subject>theory and modeling</subject><subject>Thermogravimetric analysis</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqWw4AaWWCE1re04icOuqviTKlEJWEeO4zSunDjYSauw4gickZNgCFs2M4v53hu9B8AlRnOMEFnwtp1HmKbsCEwwSpOAxoQdg4m_4YClaXQKzpzbIYRxhOIJOKyN6F0Hc8kbuO3rr4_P1uhhr5pBQ66FqYyG1VBYs5Xa3cDnoekq6ZSbQVFxy0UnrXrnnTLNDLqD1Fo1W-9W8b0y1lO8KWDNvcYPJbiGtSm80zk4Kbl28uJvT8Hr3e3L6iFYP90_rpbrQJA0YYGkjIRJgnNKeYliyoqSxZTEcZmKXLK8CEPCIsxSElGSc8yLpPS5oiImec6YCKfgavRtrXnrpeuynelt419mJEoYowjHqaeuR0pY45yVZdZaVXM7ZBhlP71mvtfst1fPLkb2oLQc_gez5WYzKr4BOnt8hQ</recordid><startdate>20220115</startdate><enddate>20220115</enddate><creator>Matar, Ghassan H.</creator><creator>Andac, Muberra</creator><creator>Elmas, Aykut</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-1753-5808</orcidid><orcidid>https://orcid.org/0000-0001-7262-9762</orcidid><orcidid>https://orcid.org/0000-0002-7721-4088</orcidid></search><sort><creationdate>20220115</creationdate><title>Locust bean gum‐polyvinyl alcohol hydrogels: Synthesis, characterization, swelling behaviors, and mathematical models</title><author>Matar, Ghassan H. ; Andac, Muberra ; Elmas, Aykut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2978-e4823771b44af0648df864266f9cbe8bd332851892542ba1ad7f5065d62bb88c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Crosslinking</topic><topic>hydrogel</topic><topic>Hydrogels</topic><topic>Infrared analysis</topic><topic>Locust bean gum</topic><topic>Materials science</topic><topic>Mathematical models</topic><topic>Polymers</topic><topic>Polyvinyl alcohol</topic><topic>swelling kinetics</topic><topic>Swelling ratio</topic><topic>Synthesis</topic><topic>theory and modeling</topic><topic>Thermogravimetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matar, Ghassan H.</creatorcontrib><creatorcontrib>Andac, Muberra</creatorcontrib><creatorcontrib>Elmas, Aykut</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matar, Ghassan H.</au><au>Andac, Muberra</au><au>Elmas, Aykut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Locust bean gum‐polyvinyl alcohol hydrogels: Synthesis, characterization, swelling behaviors, and mathematical models</atitle><jtitle>Journal of applied polymer science</jtitle><date>2022-01-15</date><risdate>2022</risdate><volume>139</volume><issue>3</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>In this study, locust bean gum/polyvinyl alcohol (LBG/PVA) hydrogels were synthesized by the gel casting method without using toxic crosslinking agents. Infrared spectroscopy (FTIR), X‐ray diffraction (XRD), and thermogravimetric analysis (TGA) methods were used for characterization of the synthesized hydrogels. Scanning electron microscopy (SEM) was used for observation surface morphology of the hydrogel and swelled hydrogels. The Swelling behavior of prepared hydrogels was investigated and the data were interpreted by various kinetic models. The prepared hydrogels showed pH and temperature‐responsive behavior. The maximum swelling ratio was evaluated as 607.72 at 37°C. The diffusional exponent values (n) were found as 0.5946, 0.5028, and 0.2785 at 4, 25, and 37°C, respectively. According to the n values, it was found that non‐Fickian diffusion dominates the swelling process. The obtained diffusion prediction curves were fitted to three different models: Higuchi, Peppas, and Elmas models. Among the results, Elmas model has better fits at 277 K and 298 K while Peppas model is better at 310 K. The results indicated that LBG/PVA hydrogels could be a candidate biomaterial for drug delivery applications.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/app.51498</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1753-5808</orcidid><orcidid>https://orcid.org/0000-0001-7262-9762</orcidid><orcidid>https://orcid.org/0000-0002-7721-4088</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2022-01, Vol.139 (3), p.n/a
issn 0021-8995
1097-4628
language eng
recordid cdi_proquest_journals_2578840169
source Wiley Online Library Journals Frontfile Complete
subjects Biocompatibility
Biomedical materials
Crosslinking
hydrogel
Hydrogels
Infrared analysis
Locust bean gum
Materials science
Mathematical models
Polymers
Polyvinyl alcohol
swelling kinetics
Swelling ratio
Synthesis
theory and modeling
Thermogravimetric analysis
title Locust bean gum‐polyvinyl alcohol hydrogels: Synthesis, characterization, swelling behaviors, and mathematical models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A07%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Locust%20bean%20gum%E2%80%90polyvinyl%20alcohol%20hydrogels:%20Synthesis,%20characterization,%20swelling%20behaviors,%20and%20mathematical%20models&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Matar,%20Ghassan%20H.&rft.date=2022-01-15&rft.volume=139&rft.issue=3&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.51498&rft_dat=%3Cproquest_cross%3E2578840169%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578840169&rft_id=info:pmid/&rfr_iscdi=true