Organic THz Generators: A Design Strategy for Organic Crystals with Ultralarge Macroscopic Hyperpolarizability

Newly designed halogenated organic quinolinium crystals proposed in this work provide fully optimized molecular ordering for maximizing the optical nonlinearity and high‐performance broadband terahertz (THz) wave generation. The ultralarge diagonal optical nonlinearity (almost 300 × 10−30 esu) of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced optical materials 2021-10, Vol.9 (19), p.n/a
Hauptverfasser: Seok, Jin‐Hong, Kim, Deokjoong, Kim, Won Tae, Kim, Seung‐Jun, Yoon, Woojin, Yoon, Ga‐Eun, Yu, In Cheol, Jazbinsek, Mojca, Kim, Sang‐Wook, Yun, Hoseop, Kim, Dongwook, Rotermund, Fabian, Kwon, O‐Pil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 19
container_start_page
container_title Advanced optical materials
container_volume 9
creator Seok, Jin‐Hong
Kim, Deokjoong
Kim, Won Tae
Kim, Seung‐Jun
Yoon, Woojin
Yoon, Ga‐Eun
Yu, In Cheol
Jazbinsek, Mojca
Kim, Sang‐Wook
Yun, Hoseop
Kim, Dongwook
Rotermund, Fabian
Kwon, O‐Pil
description Newly designed halogenated organic quinolinium crystals proposed in this work provide fully optimized molecular ordering for maximizing the optical nonlinearity and high‐performance broadband terahertz (THz) wave generation. The ultralarge diagonal optical nonlinearity (almost 300 × 10−30 esu) of the new halogenated crystals is approximately two times larger than that of state‐of‐the‐art pyridinium‐based crystals. In contrast, nonhalogenated analogous crystals exhibit very low (or vanishing) diagonal optical nonlinearity. This is attributed to halogen‐induced unique interionic interactions and fine‐tuning of the space‐filling characteristics. In addition, the halogenated crystals show a good ability for bulk crystal growth of few millimeters lateral size with plate‐like morphology and high thermal stability that are finally required for real‐world applications. The new halogenated quinolinium crystals exhibit excellent THz wave generation characteristics, significantly surpassing the limit of conversion efficiency and spectral bandwidth of inorganic benchmark crystals. A 0.16 mm thick chlorinated crystal generates a 29‐times larger THz field than 1.0 mm thick inorganic ZnTe crystals at 1500 nm pump wavelength with a flat and broadband spectrum extending up to ≈8 THz. Therefore, introducing halogen substituents is a potential design strategy for designing new organic crystals showing ultralarge macroscopic hyperpolarizability and high‐performance THz wave generation. Halogenated organic quinolinium crystals simultaneously achieve ultralarge macroscopic optical nonlinearity (about two times larger diagonal second‐order optical nonlinearity than that of state‐of‐the‐art pyridinium‐based crystals), plate‐like bulk crystal growing ability with few millimeters lateral size, and high thermal stability. They show a high potential for real‐world photonic applications, such as efficient broadband terahertz wave generation.
doi_str_mv 10.1002/adom.202100324
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2578720585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578720585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3174-a8c86293050e9afa6091a1cb4fe5e2d0d244dd25eaa6c47de7ee84345ec905b43</originalsourceid><addsrcrecordid>eNqFkD1vwjAQhq2qlYooa2dLnUNtxyZJNwQtVAIxFGbLOJfUKMSpHYTCr68R_do63dfz3p1ehO4pGVJC2KPK7X7ICAtFzPgV6jGaiYiShF7_yW_RwPsdISQUccaTHqpXrlS10Xg9P-EZ1OBUa51_wmM8BW_KGr-1oQVlhwvr8Dc9cZ1vVeXx0bTveFMFplKuBLxU2lmvbROgedeAa2wYmJPamsq03R26KYIMBl-xjzYvz-vJPFqsZq-T8SLSMU14pFKdjlgWE0EgU4UakYwqqre8AAEsJznjPM-ZAKVGmic5JAApj7kAnRGx5XEfPVz2Ns5-HMC3cmcPrg4nJRNJmjAiUhGo4YU6_-wdFLJxZq9cJymRZ1vl2Vb5Y2sQZBfB0VTQ_UPL8XS1_NV-AjR7fS4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578720585</pqid></control><display><type>article</type><title>Organic THz Generators: A Design Strategy for Organic Crystals with Ultralarge Macroscopic Hyperpolarizability</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Seok, Jin‐Hong ; Kim, Deokjoong ; Kim, Won Tae ; Kim, Seung‐Jun ; Yoon, Woojin ; Yoon, Ga‐Eun ; Yu, In Cheol ; Jazbinsek, Mojca ; Kim, Sang‐Wook ; Yun, Hoseop ; Kim, Dongwook ; Rotermund, Fabian ; Kwon, O‐Pil</creator><creatorcontrib>Seok, Jin‐Hong ; Kim, Deokjoong ; Kim, Won Tae ; Kim, Seung‐Jun ; Yoon, Woojin ; Yoon, Ga‐Eun ; Yu, In Cheol ; Jazbinsek, Mojca ; Kim, Sang‐Wook ; Yun, Hoseop ; Kim, Dongwook ; Rotermund, Fabian ; Kwon, O‐Pil</creatorcontrib><description>Newly designed halogenated organic quinolinium crystals proposed in this work provide fully optimized molecular ordering for maximizing the optical nonlinearity and high‐performance broadband terahertz (THz) wave generation. The ultralarge diagonal optical nonlinearity (almost 300 × 10−30 esu) of the new halogenated crystals is approximately two times larger than that of state‐of‐the‐art pyridinium‐based crystals. In contrast, nonhalogenated analogous crystals exhibit very low (or vanishing) diagonal optical nonlinearity. This is attributed to halogen‐induced unique interionic interactions and fine‐tuning of the space‐filling characteristics. In addition, the halogenated crystals show a good ability for bulk crystal growth of few millimeters lateral size with plate‐like morphology and high thermal stability that are finally required for real‐world applications. The new halogenated quinolinium crystals exhibit excellent THz wave generation characteristics, significantly surpassing the limit of conversion efficiency and spectral bandwidth of inorganic benchmark crystals. A 0.16 mm thick chlorinated crystal generates a 29‐times larger THz field than 1.0 mm thick inorganic ZnTe crystals at 1500 nm pump wavelength with a flat and broadband spectrum extending up to ≈8 THz. Therefore, introducing halogen substituents is a potential design strategy for designing new organic crystals showing ultralarge macroscopic hyperpolarizability and high‐performance THz wave generation. Halogenated organic quinolinium crystals simultaneously achieve ultralarge macroscopic optical nonlinearity (about two times larger diagonal second‐order optical nonlinearity than that of state‐of‐the‐art pyridinium‐based crystals), plate‐like bulk crystal growing ability with few millimeters lateral size, and high thermal stability. They show a high potential for real‐world photonic applications, such as efficient broadband terahertz wave generation.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202100324</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Broadband ; Crystal growth ; Crystals ; electro‐optic crystals ; halogenated organic crystals ; Lateral stability ; Materials science ; Morphology ; nonlinear optics ; Nonlinearity ; Optics ; Organic crystals ; Terahertz frequencies ; Thermal stability ; THz photonics ; Wave generation</subject><ispartof>Advanced optical materials, 2021-10, Vol.9 (19), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3174-a8c86293050e9afa6091a1cb4fe5e2d0d244dd25eaa6c47de7ee84345ec905b43</citedby><cites>FETCH-LOGICAL-c3174-a8c86293050e9afa6091a1cb4fe5e2d0d244dd25eaa6c47de7ee84345ec905b43</cites><orcidid>0000-0002-7964-687X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.202100324$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.202100324$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids></links><search><creatorcontrib>Seok, Jin‐Hong</creatorcontrib><creatorcontrib>Kim, Deokjoong</creatorcontrib><creatorcontrib>Kim, Won Tae</creatorcontrib><creatorcontrib>Kim, Seung‐Jun</creatorcontrib><creatorcontrib>Yoon, Woojin</creatorcontrib><creatorcontrib>Yoon, Ga‐Eun</creatorcontrib><creatorcontrib>Yu, In Cheol</creatorcontrib><creatorcontrib>Jazbinsek, Mojca</creatorcontrib><creatorcontrib>Kim, Sang‐Wook</creatorcontrib><creatorcontrib>Yun, Hoseop</creatorcontrib><creatorcontrib>Kim, Dongwook</creatorcontrib><creatorcontrib>Rotermund, Fabian</creatorcontrib><creatorcontrib>Kwon, O‐Pil</creatorcontrib><title>Organic THz Generators: A Design Strategy for Organic Crystals with Ultralarge Macroscopic Hyperpolarizability</title><title>Advanced optical materials</title><description>Newly designed halogenated organic quinolinium crystals proposed in this work provide fully optimized molecular ordering for maximizing the optical nonlinearity and high‐performance broadband terahertz (THz) wave generation. The ultralarge diagonal optical nonlinearity (almost 300 × 10−30 esu) of the new halogenated crystals is approximately two times larger than that of state‐of‐the‐art pyridinium‐based crystals. In contrast, nonhalogenated analogous crystals exhibit very low (or vanishing) diagonal optical nonlinearity. This is attributed to halogen‐induced unique interionic interactions and fine‐tuning of the space‐filling characteristics. In addition, the halogenated crystals show a good ability for bulk crystal growth of few millimeters lateral size with plate‐like morphology and high thermal stability that are finally required for real‐world applications. The new halogenated quinolinium crystals exhibit excellent THz wave generation characteristics, significantly surpassing the limit of conversion efficiency and spectral bandwidth of inorganic benchmark crystals. A 0.16 mm thick chlorinated crystal generates a 29‐times larger THz field than 1.0 mm thick inorganic ZnTe crystals at 1500 nm pump wavelength with a flat and broadband spectrum extending up to ≈8 THz. Therefore, introducing halogen substituents is a potential design strategy for designing new organic crystals showing ultralarge macroscopic hyperpolarizability and high‐performance THz wave generation. Halogenated organic quinolinium crystals simultaneously achieve ultralarge macroscopic optical nonlinearity (about two times larger diagonal second‐order optical nonlinearity than that of state‐of‐the‐art pyridinium‐based crystals), plate‐like bulk crystal growing ability with few millimeters lateral size, and high thermal stability. They show a high potential for real‐world photonic applications, such as efficient broadband terahertz wave generation.</description><subject>Broadband</subject><subject>Crystal growth</subject><subject>Crystals</subject><subject>electro‐optic crystals</subject><subject>halogenated organic crystals</subject><subject>Lateral stability</subject><subject>Materials science</subject><subject>Morphology</subject><subject>nonlinear optics</subject><subject>Nonlinearity</subject><subject>Optics</subject><subject>Organic crystals</subject><subject>Terahertz frequencies</subject><subject>Thermal stability</subject><subject>THz photonics</subject><subject>Wave generation</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkD1vwjAQhq2qlYooa2dLnUNtxyZJNwQtVAIxFGbLOJfUKMSpHYTCr68R_do63dfz3p1ehO4pGVJC2KPK7X7ICAtFzPgV6jGaiYiShF7_yW_RwPsdISQUccaTHqpXrlS10Xg9P-EZ1OBUa51_wmM8BW_KGr-1oQVlhwvr8Dc9cZ1vVeXx0bTveFMFplKuBLxU2lmvbROgedeAa2wYmJPamsq03R26KYIMBl-xjzYvz-vJPFqsZq-T8SLSMU14pFKdjlgWE0EgU4UakYwqqre8AAEsJznjPM-ZAKVGmic5JAApj7kAnRGx5XEfPVz2Ns5-HMC3cmcPrg4nJRNJmjAiUhGo4YU6_-wdFLJxZq9cJymRZ1vl2Vb5Y2sQZBfB0VTQ_UPL8XS1_NV-AjR7fS4</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Seok, Jin‐Hong</creator><creator>Kim, Deokjoong</creator><creator>Kim, Won Tae</creator><creator>Kim, Seung‐Jun</creator><creator>Yoon, Woojin</creator><creator>Yoon, Ga‐Eun</creator><creator>Yu, In Cheol</creator><creator>Jazbinsek, Mojca</creator><creator>Kim, Sang‐Wook</creator><creator>Yun, Hoseop</creator><creator>Kim, Dongwook</creator><creator>Rotermund, Fabian</creator><creator>Kwon, O‐Pil</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7964-687X</orcidid></search><sort><creationdate>20211001</creationdate><title>Organic THz Generators: A Design Strategy for Organic Crystals with Ultralarge Macroscopic Hyperpolarizability</title><author>Seok, Jin‐Hong ; Kim, Deokjoong ; Kim, Won Tae ; Kim, Seung‐Jun ; Yoon, Woojin ; Yoon, Ga‐Eun ; Yu, In Cheol ; Jazbinsek, Mojca ; Kim, Sang‐Wook ; Yun, Hoseop ; Kim, Dongwook ; Rotermund, Fabian ; Kwon, O‐Pil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3174-a8c86293050e9afa6091a1cb4fe5e2d0d244dd25eaa6c47de7ee84345ec905b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Broadband</topic><topic>Crystal growth</topic><topic>Crystals</topic><topic>electro‐optic crystals</topic><topic>halogenated organic crystals</topic><topic>Lateral stability</topic><topic>Materials science</topic><topic>Morphology</topic><topic>nonlinear optics</topic><topic>Nonlinearity</topic><topic>Optics</topic><topic>Organic crystals</topic><topic>Terahertz frequencies</topic><topic>Thermal stability</topic><topic>THz photonics</topic><topic>Wave generation</topic><toplevel>online_resources</toplevel><creatorcontrib>Seok, Jin‐Hong</creatorcontrib><creatorcontrib>Kim, Deokjoong</creatorcontrib><creatorcontrib>Kim, Won Tae</creatorcontrib><creatorcontrib>Kim, Seung‐Jun</creatorcontrib><creatorcontrib>Yoon, Woojin</creatorcontrib><creatorcontrib>Yoon, Ga‐Eun</creatorcontrib><creatorcontrib>Yu, In Cheol</creatorcontrib><creatorcontrib>Jazbinsek, Mojca</creatorcontrib><creatorcontrib>Kim, Sang‐Wook</creatorcontrib><creatorcontrib>Yun, Hoseop</creatorcontrib><creatorcontrib>Kim, Dongwook</creatorcontrib><creatorcontrib>Rotermund, Fabian</creatorcontrib><creatorcontrib>Kwon, O‐Pil</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seok, Jin‐Hong</au><au>Kim, Deokjoong</au><au>Kim, Won Tae</au><au>Kim, Seung‐Jun</au><au>Yoon, Woojin</au><au>Yoon, Ga‐Eun</au><au>Yu, In Cheol</au><au>Jazbinsek, Mojca</au><au>Kim, Sang‐Wook</au><au>Yun, Hoseop</au><au>Kim, Dongwook</au><au>Rotermund, Fabian</au><au>Kwon, O‐Pil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organic THz Generators: A Design Strategy for Organic Crystals with Ultralarge Macroscopic Hyperpolarizability</atitle><jtitle>Advanced optical materials</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>9</volume><issue>19</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Newly designed halogenated organic quinolinium crystals proposed in this work provide fully optimized molecular ordering for maximizing the optical nonlinearity and high‐performance broadband terahertz (THz) wave generation. The ultralarge diagonal optical nonlinearity (almost 300 × 10−30 esu) of the new halogenated crystals is approximately two times larger than that of state‐of‐the‐art pyridinium‐based crystals. In contrast, nonhalogenated analogous crystals exhibit very low (or vanishing) diagonal optical nonlinearity. This is attributed to halogen‐induced unique interionic interactions and fine‐tuning of the space‐filling characteristics. In addition, the halogenated crystals show a good ability for bulk crystal growth of few millimeters lateral size with plate‐like morphology and high thermal stability that are finally required for real‐world applications. The new halogenated quinolinium crystals exhibit excellent THz wave generation characteristics, significantly surpassing the limit of conversion efficiency and spectral bandwidth of inorganic benchmark crystals. A 0.16 mm thick chlorinated crystal generates a 29‐times larger THz field than 1.0 mm thick inorganic ZnTe crystals at 1500 nm pump wavelength with a flat and broadband spectrum extending up to ≈8 THz. Therefore, introducing halogen substituents is a potential design strategy for designing new organic crystals showing ultralarge macroscopic hyperpolarizability and high‐performance THz wave generation. Halogenated organic quinolinium crystals simultaneously achieve ultralarge macroscopic optical nonlinearity (about two times larger diagonal second‐order optical nonlinearity than that of state‐of‐the‐art pyridinium‐based crystals), plate‐like bulk crystal growing ability with few millimeters lateral size, and high thermal stability. They show a high potential for real‐world photonic applications, such as efficient broadband terahertz wave generation.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202100324</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7964-687X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2021-10, Vol.9 (19), p.n/a
issn 2195-1071
2195-1071
language eng
recordid cdi_proquest_journals_2578720585
source Wiley Online Library Journals Frontfile Complete
subjects Broadband
Crystal growth
Crystals
electro‐optic crystals
halogenated organic crystals
Lateral stability
Materials science
Morphology
nonlinear optics
Nonlinearity
Optics
Organic crystals
Terahertz frequencies
Thermal stability
THz photonics
Wave generation
title Organic THz Generators: A Design Strategy for Organic Crystals with Ultralarge Macroscopic Hyperpolarizability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A42%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organic%20THz%20Generators:%20A%20Design%20Strategy%20for%20Organic%20Crystals%20with%20Ultralarge%20Macroscopic%20Hyperpolarizability&rft.jtitle=Advanced%20optical%20materials&rft.au=Seok,%20Jin%E2%80%90Hong&rft.date=2021-10-01&rft.volume=9&rft.issue=19&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202100324&rft_dat=%3Cproquest_cross%3E2578720585%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578720585&rft_id=info:pmid/&rfr_iscdi=true