Organic THz Generators: A Design Strategy for Organic Crystals with Ultralarge Macroscopic Hyperpolarizability
Newly designed halogenated organic quinolinium crystals proposed in this work provide fully optimized molecular ordering for maximizing the optical nonlinearity and high‐performance broadband terahertz (THz) wave generation. The ultralarge diagonal optical nonlinearity (almost 300 × 10−30 esu) of th...
Gespeichert in:
Veröffentlicht in: | Advanced optical materials 2021-10, Vol.9 (19), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 19 |
container_start_page | |
container_title | Advanced optical materials |
container_volume | 9 |
creator | Seok, Jin‐Hong Kim, Deokjoong Kim, Won Tae Kim, Seung‐Jun Yoon, Woojin Yoon, Ga‐Eun Yu, In Cheol Jazbinsek, Mojca Kim, Sang‐Wook Yun, Hoseop Kim, Dongwook Rotermund, Fabian Kwon, O‐Pil |
description | Newly designed halogenated organic quinolinium crystals proposed in this work provide fully optimized molecular ordering for maximizing the optical nonlinearity and high‐performance broadband terahertz (THz) wave generation. The ultralarge diagonal optical nonlinearity (almost 300 × 10−30 esu) of the new halogenated crystals is approximately two times larger than that of state‐of‐the‐art pyridinium‐based crystals. In contrast, nonhalogenated analogous crystals exhibit very low (or vanishing) diagonal optical nonlinearity. This is attributed to halogen‐induced unique interionic interactions and fine‐tuning of the space‐filling characteristics. In addition, the halogenated crystals show a good ability for bulk crystal growth of few millimeters lateral size with plate‐like morphology and high thermal stability that are finally required for real‐world applications. The new halogenated quinolinium crystals exhibit excellent THz wave generation characteristics, significantly surpassing the limit of conversion efficiency and spectral bandwidth of inorganic benchmark crystals. A 0.16 mm thick chlorinated crystal generates a 29‐times larger THz field than 1.0 mm thick inorganic ZnTe crystals at 1500 nm pump wavelength with a flat and broadband spectrum extending up to ≈8 THz. Therefore, introducing halogen substituents is a potential design strategy for designing new organic crystals showing ultralarge macroscopic hyperpolarizability and high‐performance THz wave generation.
Halogenated organic quinolinium crystals simultaneously achieve ultralarge macroscopic optical nonlinearity (about two times larger diagonal second‐order optical nonlinearity than that of state‐of‐the‐art pyridinium‐based crystals), plate‐like bulk crystal growing ability with few millimeters lateral size, and high thermal stability. They show a high potential for real‐world photonic applications, such as efficient broadband terahertz wave generation. |
doi_str_mv | 10.1002/adom.202100324 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2578720585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578720585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3174-a8c86293050e9afa6091a1cb4fe5e2d0d244dd25eaa6c47de7ee84345ec905b43</originalsourceid><addsrcrecordid>eNqFkD1vwjAQhq2qlYooa2dLnUNtxyZJNwQtVAIxFGbLOJfUKMSpHYTCr68R_do63dfz3p1ehO4pGVJC2KPK7X7ICAtFzPgV6jGaiYiShF7_yW_RwPsdISQUccaTHqpXrlS10Xg9P-EZ1OBUa51_wmM8BW_KGr-1oQVlhwvr8Dc9cZ1vVeXx0bTveFMFplKuBLxU2lmvbROgedeAa2wYmJPamsq03R26KYIMBl-xjzYvz-vJPFqsZq-T8SLSMU14pFKdjlgWE0EgU4UakYwqqre8AAEsJznjPM-ZAKVGmic5JAApj7kAnRGx5XEfPVz2Ns5-HMC3cmcPrg4nJRNJmjAiUhGo4YU6_-wdFLJxZq9cJymRZ1vl2Vb5Y2sQZBfB0VTQ_UPL8XS1_NV-AjR7fS4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578720585</pqid></control><display><type>article</type><title>Organic THz Generators: A Design Strategy for Organic Crystals with Ultralarge Macroscopic Hyperpolarizability</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Seok, Jin‐Hong ; Kim, Deokjoong ; Kim, Won Tae ; Kim, Seung‐Jun ; Yoon, Woojin ; Yoon, Ga‐Eun ; Yu, In Cheol ; Jazbinsek, Mojca ; Kim, Sang‐Wook ; Yun, Hoseop ; Kim, Dongwook ; Rotermund, Fabian ; Kwon, O‐Pil</creator><creatorcontrib>Seok, Jin‐Hong ; Kim, Deokjoong ; Kim, Won Tae ; Kim, Seung‐Jun ; Yoon, Woojin ; Yoon, Ga‐Eun ; Yu, In Cheol ; Jazbinsek, Mojca ; Kim, Sang‐Wook ; Yun, Hoseop ; Kim, Dongwook ; Rotermund, Fabian ; Kwon, O‐Pil</creatorcontrib><description>Newly designed halogenated organic quinolinium crystals proposed in this work provide fully optimized molecular ordering for maximizing the optical nonlinearity and high‐performance broadband terahertz (THz) wave generation. The ultralarge diagonal optical nonlinearity (almost 300 × 10−30 esu) of the new halogenated crystals is approximately two times larger than that of state‐of‐the‐art pyridinium‐based crystals. In contrast, nonhalogenated analogous crystals exhibit very low (or vanishing) diagonal optical nonlinearity. This is attributed to halogen‐induced unique interionic interactions and fine‐tuning of the space‐filling characteristics. In addition, the halogenated crystals show a good ability for bulk crystal growth of few millimeters lateral size with plate‐like morphology and high thermal stability that are finally required for real‐world applications. The new halogenated quinolinium crystals exhibit excellent THz wave generation characteristics, significantly surpassing the limit of conversion efficiency and spectral bandwidth of inorganic benchmark crystals. A 0.16 mm thick chlorinated crystal generates a 29‐times larger THz field than 1.0 mm thick inorganic ZnTe crystals at 1500 nm pump wavelength with a flat and broadband spectrum extending up to ≈8 THz. Therefore, introducing halogen substituents is a potential design strategy for designing new organic crystals showing ultralarge macroscopic hyperpolarizability and high‐performance THz wave generation.
Halogenated organic quinolinium crystals simultaneously achieve ultralarge macroscopic optical nonlinearity (about two times larger diagonal second‐order optical nonlinearity than that of state‐of‐the‐art pyridinium‐based crystals), plate‐like bulk crystal growing ability with few millimeters lateral size, and high thermal stability. They show a high potential for real‐world photonic applications, such as efficient broadband terahertz wave generation.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202100324</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Broadband ; Crystal growth ; Crystals ; electro‐optic crystals ; halogenated organic crystals ; Lateral stability ; Materials science ; Morphology ; nonlinear optics ; Nonlinearity ; Optics ; Organic crystals ; Terahertz frequencies ; Thermal stability ; THz photonics ; Wave generation</subject><ispartof>Advanced optical materials, 2021-10, Vol.9 (19), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3174-a8c86293050e9afa6091a1cb4fe5e2d0d244dd25eaa6c47de7ee84345ec905b43</citedby><cites>FETCH-LOGICAL-c3174-a8c86293050e9afa6091a1cb4fe5e2d0d244dd25eaa6c47de7ee84345ec905b43</cites><orcidid>0000-0002-7964-687X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.202100324$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.202100324$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids></links><search><creatorcontrib>Seok, Jin‐Hong</creatorcontrib><creatorcontrib>Kim, Deokjoong</creatorcontrib><creatorcontrib>Kim, Won Tae</creatorcontrib><creatorcontrib>Kim, Seung‐Jun</creatorcontrib><creatorcontrib>Yoon, Woojin</creatorcontrib><creatorcontrib>Yoon, Ga‐Eun</creatorcontrib><creatorcontrib>Yu, In Cheol</creatorcontrib><creatorcontrib>Jazbinsek, Mojca</creatorcontrib><creatorcontrib>Kim, Sang‐Wook</creatorcontrib><creatorcontrib>Yun, Hoseop</creatorcontrib><creatorcontrib>Kim, Dongwook</creatorcontrib><creatorcontrib>Rotermund, Fabian</creatorcontrib><creatorcontrib>Kwon, O‐Pil</creatorcontrib><title>Organic THz Generators: A Design Strategy for Organic Crystals with Ultralarge Macroscopic Hyperpolarizability</title><title>Advanced optical materials</title><description>Newly designed halogenated organic quinolinium crystals proposed in this work provide fully optimized molecular ordering for maximizing the optical nonlinearity and high‐performance broadband terahertz (THz) wave generation. The ultralarge diagonal optical nonlinearity (almost 300 × 10−30 esu) of the new halogenated crystals is approximately two times larger than that of state‐of‐the‐art pyridinium‐based crystals. In contrast, nonhalogenated analogous crystals exhibit very low (or vanishing) diagonal optical nonlinearity. This is attributed to halogen‐induced unique interionic interactions and fine‐tuning of the space‐filling characteristics. In addition, the halogenated crystals show a good ability for bulk crystal growth of few millimeters lateral size with plate‐like morphology and high thermal stability that are finally required for real‐world applications. The new halogenated quinolinium crystals exhibit excellent THz wave generation characteristics, significantly surpassing the limit of conversion efficiency and spectral bandwidth of inorganic benchmark crystals. A 0.16 mm thick chlorinated crystal generates a 29‐times larger THz field than 1.0 mm thick inorganic ZnTe crystals at 1500 nm pump wavelength with a flat and broadband spectrum extending up to ≈8 THz. Therefore, introducing halogen substituents is a potential design strategy for designing new organic crystals showing ultralarge macroscopic hyperpolarizability and high‐performance THz wave generation.
Halogenated organic quinolinium crystals simultaneously achieve ultralarge macroscopic optical nonlinearity (about two times larger diagonal second‐order optical nonlinearity than that of state‐of‐the‐art pyridinium‐based crystals), plate‐like bulk crystal growing ability with few millimeters lateral size, and high thermal stability. They show a high potential for real‐world photonic applications, such as efficient broadband terahertz wave generation.</description><subject>Broadband</subject><subject>Crystal growth</subject><subject>Crystals</subject><subject>electro‐optic crystals</subject><subject>halogenated organic crystals</subject><subject>Lateral stability</subject><subject>Materials science</subject><subject>Morphology</subject><subject>nonlinear optics</subject><subject>Nonlinearity</subject><subject>Optics</subject><subject>Organic crystals</subject><subject>Terahertz frequencies</subject><subject>Thermal stability</subject><subject>THz photonics</subject><subject>Wave generation</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkD1vwjAQhq2qlYooa2dLnUNtxyZJNwQtVAIxFGbLOJfUKMSpHYTCr68R_do63dfz3p1ehO4pGVJC2KPK7X7ICAtFzPgV6jGaiYiShF7_yW_RwPsdISQUccaTHqpXrlS10Xg9P-EZ1OBUa51_wmM8BW_KGr-1oQVlhwvr8Dc9cZ1vVeXx0bTveFMFplKuBLxU2lmvbROgedeAa2wYmJPamsq03R26KYIMBl-xjzYvz-vJPFqsZq-T8SLSMU14pFKdjlgWE0EgU4UakYwqqre8AAEsJznjPM-ZAKVGmic5JAApj7kAnRGx5XEfPVz2Ns5-HMC3cmcPrg4nJRNJmjAiUhGo4YU6_-wdFLJxZq9cJymRZ1vl2Vb5Y2sQZBfB0VTQ_UPL8XS1_NV-AjR7fS4</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Seok, Jin‐Hong</creator><creator>Kim, Deokjoong</creator><creator>Kim, Won Tae</creator><creator>Kim, Seung‐Jun</creator><creator>Yoon, Woojin</creator><creator>Yoon, Ga‐Eun</creator><creator>Yu, In Cheol</creator><creator>Jazbinsek, Mojca</creator><creator>Kim, Sang‐Wook</creator><creator>Yun, Hoseop</creator><creator>Kim, Dongwook</creator><creator>Rotermund, Fabian</creator><creator>Kwon, O‐Pil</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7964-687X</orcidid></search><sort><creationdate>20211001</creationdate><title>Organic THz Generators: A Design Strategy for Organic Crystals with Ultralarge Macroscopic Hyperpolarizability</title><author>Seok, Jin‐Hong ; Kim, Deokjoong ; Kim, Won Tae ; Kim, Seung‐Jun ; Yoon, Woojin ; Yoon, Ga‐Eun ; Yu, In Cheol ; Jazbinsek, Mojca ; Kim, Sang‐Wook ; Yun, Hoseop ; Kim, Dongwook ; Rotermund, Fabian ; Kwon, O‐Pil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3174-a8c86293050e9afa6091a1cb4fe5e2d0d244dd25eaa6c47de7ee84345ec905b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Broadband</topic><topic>Crystal growth</topic><topic>Crystals</topic><topic>electro‐optic crystals</topic><topic>halogenated organic crystals</topic><topic>Lateral stability</topic><topic>Materials science</topic><topic>Morphology</topic><topic>nonlinear optics</topic><topic>Nonlinearity</topic><topic>Optics</topic><topic>Organic crystals</topic><topic>Terahertz frequencies</topic><topic>Thermal stability</topic><topic>THz photonics</topic><topic>Wave generation</topic><toplevel>online_resources</toplevel><creatorcontrib>Seok, Jin‐Hong</creatorcontrib><creatorcontrib>Kim, Deokjoong</creatorcontrib><creatorcontrib>Kim, Won Tae</creatorcontrib><creatorcontrib>Kim, Seung‐Jun</creatorcontrib><creatorcontrib>Yoon, Woojin</creatorcontrib><creatorcontrib>Yoon, Ga‐Eun</creatorcontrib><creatorcontrib>Yu, In Cheol</creatorcontrib><creatorcontrib>Jazbinsek, Mojca</creatorcontrib><creatorcontrib>Kim, Sang‐Wook</creatorcontrib><creatorcontrib>Yun, Hoseop</creatorcontrib><creatorcontrib>Kim, Dongwook</creatorcontrib><creatorcontrib>Rotermund, Fabian</creatorcontrib><creatorcontrib>Kwon, O‐Pil</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seok, Jin‐Hong</au><au>Kim, Deokjoong</au><au>Kim, Won Tae</au><au>Kim, Seung‐Jun</au><au>Yoon, Woojin</au><au>Yoon, Ga‐Eun</au><au>Yu, In Cheol</au><au>Jazbinsek, Mojca</au><au>Kim, Sang‐Wook</au><au>Yun, Hoseop</au><au>Kim, Dongwook</au><au>Rotermund, Fabian</au><au>Kwon, O‐Pil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organic THz Generators: A Design Strategy for Organic Crystals with Ultralarge Macroscopic Hyperpolarizability</atitle><jtitle>Advanced optical materials</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>9</volume><issue>19</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Newly designed halogenated organic quinolinium crystals proposed in this work provide fully optimized molecular ordering for maximizing the optical nonlinearity and high‐performance broadband terahertz (THz) wave generation. The ultralarge diagonal optical nonlinearity (almost 300 × 10−30 esu) of the new halogenated crystals is approximately two times larger than that of state‐of‐the‐art pyridinium‐based crystals. In contrast, nonhalogenated analogous crystals exhibit very low (or vanishing) diagonal optical nonlinearity. This is attributed to halogen‐induced unique interionic interactions and fine‐tuning of the space‐filling characteristics. In addition, the halogenated crystals show a good ability for bulk crystal growth of few millimeters lateral size with plate‐like morphology and high thermal stability that are finally required for real‐world applications. The new halogenated quinolinium crystals exhibit excellent THz wave generation characteristics, significantly surpassing the limit of conversion efficiency and spectral bandwidth of inorganic benchmark crystals. A 0.16 mm thick chlorinated crystal generates a 29‐times larger THz field than 1.0 mm thick inorganic ZnTe crystals at 1500 nm pump wavelength with a flat and broadband spectrum extending up to ≈8 THz. Therefore, introducing halogen substituents is a potential design strategy for designing new organic crystals showing ultralarge macroscopic hyperpolarizability and high‐performance THz wave generation.
Halogenated organic quinolinium crystals simultaneously achieve ultralarge macroscopic optical nonlinearity (about two times larger diagonal second‐order optical nonlinearity than that of state‐of‐the‐art pyridinium‐based crystals), plate‐like bulk crystal growing ability with few millimeters lateral size, and high thermal stability. They show a high potential for real‐world photonic applications, such as efficient broadband terahertz wave generation.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202100324</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7964-687X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2195-1071 |
ispartof | Advanced optical materials, 2021-10, Vol.9 (19), p.n/a |
issn | 2195-1071 2195-1071 |
language | eng |
recordid | cdi_proquest_journals_2578720585 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Broadband Crystal growth Crystals electro‐optic crystals halogenated organic crystals Lateral stability Materials science Morphology nonlinear optics Nonlinearity Optics Organic crystals Terahertz frequencies Thermal stability THz photonics Wave generation |
title | Organic THz Generators: A Design Strategy for Organic Crystals with Ultralarge Macroscopic Hyperpolarizability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A42%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organic%20THz%20Generators:%20A%20Design%20Strategy%20for%20Organic%20Crystals%20with%20Ultralarge%20Macroscopic%20Hyperpolarizability&rft.jtitle=Advanced%20optical%20materials&rft.au=Seok,%20Jin%E2%80%90Hong&rft.date=2021-10-01&rft.volume=9&rft.issue=19&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202100324&rft_dat=%3Cproquest_cross%3E2578720585%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578720585&rft_id=info:pmid/&rfr_iscdi=true |