Impact Region of Nonbuoyant Orthogonal Discharge

AbstractThe results of experimental studies into the behavior of nonbuoyant discharges impacting a solid boundary are presented. The discharges were released perpendicular to the boundary at nondimensional heights (H/d) ranging from to 36 to 173, where H/d is the ratio of the jet discharge height ab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydraulic engineering (New York, N.Y.) N.Y.), 2021-12, Vol.147 (12)
Hauptverfasser: Ramakanth, A, Davidson, M. J, Nokes, R. I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Journal of hydraulic engineering (New York, N.Y.)
container_volume 147
creator Ramakanth, A
Davidson, M. J
Nokes, R. I
description AbstractThe results of experimental studies into the behavior of nonbuoyant discharges impacting a solid boundary are presented. The discharges were released perpendicular to the boundary at nondimensional heights (H/d) ranging from to 36 to 173, where H/d is the ratio of the jet discharge height above the boundary to the jet diameter. Although the primary focus was on concentration field measurements using a laser-induced fluorescence system, additional velocity field data are presented from a recent study that used a similar discharge configuration and a particle tracking velocimetry system. Integral models provided a relatively simplistic framework for quantifying and interpreting the flow behavior in the vicinity of the boundary. The new data sets enabled defining the scale of the impact region based on the ability of integral techniques to model the flow entering and leaving this region. These data sets also offered insights into the flow behavior in the impact region and provided the basis for determining the influence of the impact region on the flow behavior.
doi_str_mv 10.1061/(ASCE)HY.1943-7900.0001933
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2578681993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578681993</sourcerecordid><originalsourceid>FETCH-LOGICAL-a281t-e4c37797ece74f79d2926c0f74a3b68355b1ed3c2fb890def5329c5684cd7f6b3</originalsourceid><addsrcrecordid>eNp1kMtOAjEUhhujiYi-w0Q3uhjsbXpxRwCFhEjiZcGq6XTaYQhMsR0WvL0zAXXl6iQn__fnnA-AWwQHCDL0eD98H00epssBkpSkXEI4gBAiScgZ6P3uzkEPckJSSbG8BFcxrtsMZVL0AJxtd9o0yZstK18n3iWvvs73_qDrJlmEZuVLX-tNMq6iWelQ2mtw4fQm2pvT7IPP58nHaJrOFy-z0XCeaixQk1pqCOeSW2M5dVwWWGJmoONUk5wJkmU5sgUx2OVCwsK6jGBpMiaoKbhjOemDu2PvLvivvY2NWvt9aE-JCmdcMIFk-2UfPB1TJvgYg3VqF6qtDgeFoOoMKdUZUtOl6myozoY6GWphdoR1NPav_of8H_wGI-5pfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578681993</pqid></control><display><type>article</type><title>Impact Region of Nonbuoyant Orthogonal Discharge</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Ramakanth, A ; Davidson, M. J ; Nokes, R. I</creator><creatorcontrib>Ramakanth, A ; Davidson, M. J ; Nokes, R. I</creatorcontrib><description>AbstractThe results of experimental studies into the behavior of nonbuoyant discharges impacting a solid boundary are presented. The discharges were released perpendicular to the boundary at nondimensional heights (H/d) ranging from to 36 to 173, where H/d is the ratio of the jet discharge height above the boundary to the jet diameter. Although the primary focus was on concentration field measurements using a laser-induced fluorescence system, additional velocity field data are presented from a recent study that used a similar discharge configuration and a particle tracking velocimetry system. Integral models provided a relatively simplistic framework for quantifying and interpreting the flow behavior in the vicinity of the boundary. The new data sets enabled defining the scale of the impact region based on the ability of integral techniques to model the flow entering and leaving this region. These data sets also offered insights into the flow behavior in the impact region and provided the basis for determining the influence of the impact region on the flow behavior.</description><identifier>ISSN: 0733-9429</identifier><identifier>EISSN: 1943-7900</identifier><identifier>DOI: 10.1061/(ASCE)HY.1943-7900.0001933</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Datasets ; Diameters ; Discharge ; Flow ; Fluorescence ; Laser induced fluorescence ; Lasers ; Particle tracking ; Particle tracking velocimetry ; Technical Papers ; Velocity distribution</subject><ispartof>Journal of hydraulic engineering (New York, N.Y.), 2021-12, Vol.147 (12)</ispartof><rights>2021 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a281t-e4c37797ece74f79d2926c0f74a3b68355b1ed3c2fb890def5329c5684cd7f6b3</cites><orcidid>0000-0003-1659-2517 ; 0000-0002-6510-018X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)HY.1943-7900.0001933$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)HY.1943-7900.0001933$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,75942,75950</link.rule.ids></links><search><creatorcontrib>Ramakanth, A</creatorcontrib><creatorcontrib>Davidson, M. J</creatorcontrib><creatorcontrib>Nokes, R. I</creatorcontrib><title>Impact Region of Nonbuoyant Orthogonal Discharge</title><title>Journal of hydraulic engineering (New York, N.Y.)</title><description>AbstractThe results of experimental studies into the behavior of nonbuoyant discharges impacting a solid boundary are presented. The discharges were released perpendicular to the boundary at nondimensional heights (H/d) ranging from to 36 to 173, where H/d is the ratio of the jet discharge height above the boundary to the jet diameter. Although the primary focus was on concentration field measurements using a laser-induced fluorescence system, additional velocity field data are presented from a recent study that used a similar discharge configuration and a particle tracking velocimetry system. Integral models provided a relatively simplistic framework for quantifying and interpreting the flow behavior in the vicinity of the boundary. The new data sets enabled defining the scale of the impact region based on the ability of integral techniques to model the flow entering and leaving this region. These data sets also offered insights into the flow behavior in the impact region and provided the basis for determining the influence of the impact region on the flow behavior.</description><subject>Datasets</subject><subject>Diameters</subject><subject>Discharge</subject><subject>Flow</subject><subject>Fluorescence</subject><subject>Laser induced fluorescence</subject><subject>Lasers</subject><subject>Particle tracking</subject><subject>Particle tracking velocimetry</subject><subject>Technical Papers</subject><subject>Velocity distribution</subject><issn>0733-9429</issn><issn>1943-7900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOAjEUhhujiYi-w0Q3uhjsbXpxRwCFhEjiZcGq6XTaYQhMsR0WvL0zAXXl6iQn__fnnA-AWwQHCDL0eD98H00epssBkpSkXEI4gBAiScgZ6P3uzkEPckJSSbG8BFcxrtsMZVL0AJxtd9o0yZstK18n3iWvvs73_qDrJlmEZuVLX-tNMq6iWelQ2mtw4fQm2pvT7IPP58nHaJrOFy-z0XCeaixQk1pqCOeSW2M5dVwWWGJmoONUk5wJkmU5sgUx2OVCwsK6jGBpMiaoKbhjOemDu2PvLvivvY2NWvt9aE-JCmdcMIFk-2UfPB1TJvgYg3VqF6qtDgeFoOoMKdUZUtOl6myozoY6GWphdoR1NPav_of8H_wGI-5pfA</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Ramakanth, A</creator><creator>Davidson, M. J</creator><creator>Nokes, R. I</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-1659-2517</orcidid><orcidid>https://orcid.org/0000-0002-6510-018X</orcidid></search><sort><creationdate>20211201</creationdate><title>Impact Region of Nonbuoyant Orthogonal Discharge</title><author>Ramakanth, A ; Davidson, M. J ; Nokes, R. I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a281t-e4c37797ece74f79d2926c0f74a3b68355b1ed3c2fb890def5329c5684cd7f6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Datasets</topic><topic>Diameters</topic><topic>Discharge</topic><topic>Flow</topic><topic>Fluorescence</topic><topic>Laser induced fluorescence</topic><topic>Lasers</topic><topic>Particle tracking</topic><topic>Particle tracking velocimetry</topic><topic>Technical Papers</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramakanth, A</creatorcontrib><creatorcontrib>Davidson, M. J</creatorcontrib><creatorcontrib>Nokes, R. I</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of hydraulic engineering (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramakanth, A</au><au>Davidson, M. J</au><au>Nokes, R. I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact Region of Nonbuoyant Orthogonal Discharge</atitle><jtitle>Journal of hydraulic engineering (New York, N.Y.)</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>147</volume><issue>12</issue><issn>0733-9429</issn><eissn>1943-7900</eissn><abstract>AbstractThe results of experimental studies into the behavior of nonbuoyant discharges impacting a solid boundary are presented. The discharges were released perpendicular to the boundary at nondimensional heights (H/d) ranging from to 36 to 173, where H/d is the ratio of the jet discharge height above the boundary to the jet diameter. Although the primary focus was on concentration field measurements using a laser-induced fluorescence system, additional velocity field data are presented from a recent study that used a similar discharge configuration and a particle tracking velocimetry system. Integral models provided a relatively simplistic framework for quantifying and interpreting the flow behavior in the vicinity of the boundary. The new data sets enabled defining the scale of the impact region based on the ability of integral techniques to model the flow entering and leaving this region. These data sets also offered insights into the flow behavior in the impact region and provided the basis for determining the influence of the impact region on the flow behavior.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)HY.1943-7900.0001933</doi><orcidid>https://orcid.org/0000-0003-1659-2517</orcidid><orcidid>https://orcid.org/0000-0002-6510-018X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0733-9429
ispartof Journal of hydraulic engineering (New York, N.Y.), 2021-12, Vol.147 (12)
issn 0733-9429
1943-7900
language eng
recordid cdi_proquest_journals_2578681993
source American Society of Civil Engineers:NESLI2:Journals:2014
subjects Datasets
Diameters
Discharge
Flow
Fluorescence
Laser induced fluorescence
Lasers
Particle tracking
Particle tracking velocimetry
Technical Papers
Velocity distribution
title Impact Region of Nonbuoyant Orthogonal Discharge
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A13%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20Region%20of%20Nonbuoyant%20Orthogonal%20Discharge&rft.jtitle=Journal%20of%20hydraulic%20engineering%20(New%20York,%20N.Y.)&rft.au=Ramakanth,%20A&rft.date=2021-12-01&rft.volume=147&rft.issue=12&rft.issn=0733-9429&rft.eissn=1943-7900&rft_id=info:doi/10.1061/(ASCE)HY.1943-7900.0001933&rft_dat=%3Cproquest_cross%3E2578681993%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578681993&rft_id=info:pmid/&rfr_iscdi=true