Impact Region of Nonbuoyant Orthogonal Discharge
AbstractThe results of experimental studies into the behavior of nonbuoyant discharges impacting a solid boundary are presented. The discharges were released perpendicular to the boundary at nondimensional heights (H/d) ranging from to 36 to 173, where H/d is the ratio of the jet discharge height ab...
Gespeichert in:
Veröffentlicht in: | Journal of hydraulic engineering (New York, N.Y.) N.Y.), 2021-12, Vol.147 (12) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Journal of hydraulic engineering (New York, N.Y.) |
container_volume | 147 |
creator | Ramakanth, A Davidson, M. J Nokes, R. I |
description | AbstractThe results of experimental studies into the behavior of nonbuoyant discharges impacting a solid boundary are presented. The discharges were released perpendicular to the boundary at nondimensional heights (H/d) ranging from to 36 to 173, where H/d is the ratio of the jet discharge height above the boundary to the jet diameter. Although the primary focus was on concentration field measurements using a laser-induced fluorescence system, additional velocity field data are presented from a recent study that used a similar discharge configuration and a particle tracking velocimetry system. Integral models provided a relatively simplistic framework for quantifying and interpreting the flow behavior in the vicinity of the boundary. The new data sets enabled defining the scale of the impact region based on the ability of integral techniques to model the flow entering and leaving this region. These data sets also offered insights into the flow behavior in the impact region and provided the basis for determining the influence of the impact region on the flow behavior. |
doi_str_mv | 10.1061/(ASCE)HY.1943-7900.0001933 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2578681993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578681993</sourcerecordid><originalsourceid>FETCH-LOGICAL-a281t-e4c37797ece74f79d2926c0f74a3b68355b1ed3c2fb890def5329c5684cd7f6b3</originalsourceid><addsrcrecordid>eNp1kMtOAjEUhhujiYi-w0Q3uhjsbXpxRwCFhEjiZcGq6XTaYQhMsR0WvL0zAXXl6iQn__fnnA-AWwQHCDL0eD98H00epssBkpSkXEI4gBAiScgZ6P3uzkEPckJSSbG8BFcxrtsMZVL0AJxtd9o0yZstK18n3iWvvs73_qDrJlmEZuVLX-tNMq6iWelQ2mtw4fQm2pvT7IPP58nHaJrOFy-z0XCeaixQk1pqCOeSW2M5dVwWWGJmoONUk5wJkmU5sgUx2OVCwsK6jGBpMiaoKbhjOemDu2PvLvivvY2NWvt9aE-JCmdcMIFk-2UfPB1TJvgYg3VqF6qtDgeFoOoMKdUZUtOl6myozoY6GWphdoR1NPav_of8H_wGI-5pfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578681993</pqid></control><display><type>article</type><title>Impact Region of Nonbuoyant Orthogonal Discharge</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Ramakanth, A ; Davidson, M. J ; Nokes, R. I</creator><creatorcontrib>Ramakanth, A ; Davidson, M. J ; Nokes, R. I</creatorcontrib><description>AbstractThe results of experimental studies into the behavior of nonbuoyant discharges impacting a solid boundary are presented. The discharges were released perpendicular to the boundary at nondimensional heights (H/d) ranging from to 36 to 173, where H/d is the ratio of the jet discharge height above the boundary to the jet diameter. Although the primary focus was on concentration field measurements using a laser-induced fluorescence system, additional velocity field data are presented from a recent study that used a similar discharge configuration and a particle tracking velocimetry system. Integral models provided a relatively simplistic framework for quantifying and interpreting the flow behavior in the vicinity of the boundary. The new data sets enabled defining the scale of the impact region based on the ability of integral techniques to model the flow entering and leaving this region. These data sets also offered insights into the flow behavior in the impact region and provided the basis for determining the influence of the impact region on the flow behavior.</description><identifier>ISSN: 0733-9429</identifier><identifier>EISSN: 1943-7900</identifier><identifier>DOI: 10.1061/(ASCE)HY.1943-7900.0001933</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Datasets ; Diameters ; Discharge ; Flow ; Fluorescence ; Laser induced fluorescence ; Lasers ; Particle tracking ; Particle tracking velocimetry ; Technical Papers ; Velocity distribution</subject><ispartof>Journal of hydraulic engineering (New York, N.Y.), 2021-12, Vol.147 (12)</ispartof><rights>2021 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a281t-e4c37797ece74f79d2926c0f74a3b68355b1ed3c2fb890def5329c5684cd7f6b3</cites><orcidid>0000-0003-1659-2517 ; 0000-0002-6510-018X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)HY.1943-7900.0001933$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)HY.1943-7900.0001933$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,75942,75950</link.rule.ids></links><search><creatorcontrib>Ramakanth, A</creatorcontrib><creatorcontrib>Davidson, M. J</creatorcontrib><creatorcontrib>Nokes, R. I</creatorcontrib><title>Impact Region of Nonbuoyant Orthogonal Discharge</title><title>Journal of hydraulic engineering (New York, N.Y.)</title><description>AbstractThe results of experimental studies into the behavior of nonbuoyant discharges impacting a solid boundary are presented. The discharges were released perpendicular to the boundary at nondimensional heights (H/d) ranging from to 36 to 173, where H/d is the ratio of the jet discharge height above the boundary to the jet diameter. Although the primary focus was on concentration field measurements using a laser-induced fluorescence system, additional velocity field data are presented from a recent study that used a similar discharge configuration and a particle tracking velocimetry system. Integral models provided a relatively simplistic framework for quantifying and interpreting the flow behavior in the vicinity of the boundary. The new data sets enabled defining the scale of the impact region based on the ability of integral techniques to model the flow entering and leaving this region. These data sets also offered insights into the flow behavior in the impact region and provided the basis for determining the influence of the impact region on the flow behavior.</description><subject>Datasets</subject><subject>Diameters</subject><subject>Discharge</subject><subject>Flow</subject><subject>Fluorescence</subject><subject>Laser induced fluorescence</subject><subject>Lasers</subject><subject>Particle tracking</subject><subject>Particle tracking velocimetry</subject><subject>Technical Papers</subject><subject>Velocity distribution</subject><issn>0733-9429</issn><issn>1943-7900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOAjEUhhujiYi-w0Q3uhjsbXpxRwCFhEjiZcGq6XTaYQhMsR0WvL0zAXXl6iQn__fnnA-AWwQHCDL0eD98H00epssBkpSkXEI4gBAiScgZ6P3uzkEPckJSSbG8BFcxrtsMZVL0AJxtd9o0yZstK18n3iWvvs73_qDrJlmEZuVLX-tNMq6iWelQ2mtw4fQm2pvT7IPP58nHaJrOFy-z0XCeaixQk1pqCOeSW2M5dVwWWGJmoONUk5wJkmU5sgUx2OVCwsK6jGBpMiaoKbhjOemDu2PvLvivvY2NWvt9aE-JCmdcMIFk-2UfPB1TJvgYg3VqF6qtDgeFoOoMKdUZUtOl6myozoY6GWphdoR1NPav_of8H_wGI-5pfA</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Ramakanth, A</creator><creator>Davidson, M. J</creator><creator>Nokes, R. I</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-1659-2517</orcidid><orcidid>https://orcid.org/0000-0002-6510-018X</orcidid></search><sort><creationdate>20211201</creationdate><title>Impact Region of Nonbuoyant Orthogonal Discharge</title><author>Ramakanth, A ; Davidson, M. J ; Nokes, R. I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a281t-e4c37797ece74f79d2926c0f74a3b68355b1ed3c2fb890def5329c5684cd7f6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Datasets</topic><topic>Diameters</topic><topic>Discharge</topic><topic>Flow</topic><topic>Fluorescence</topic><topic>Laser induced fluorescence</topic><topic>Lasers</topic><topic>Particle tracking</topic><topic>Particle tracking velocimetry</topic><topic>Technical Papers</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramakanth, A</creatorcontrib><creatorcontrib>Davidson, M. J</creatorcontrib><creatorcontrib>Nokes, R. I</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of hydraulic engineering (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramakanth, A</au><au>Davidson, M. J</au><au>Nokes, R. I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact Region of Nonbuoyant Orthogonal Discharge</atitle><jtitle>Journal of hydraulic engineering (New York, N.Y.)</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>147</volume><issue>12</issue><issn>0733-9429</issn><eissn>1943-7900</eissn><abstract>AbstractThe results of experimental studies into the behavior of nonbuoyant discharges impacting a solid boundary are presented. The discharges were released perpendicular to the boundary at nondimensional heights (H/d) ranging from to 36 to 173, where H/d is the ratio of the jet discharge height above the boundary to the jet diameter. Although the primary focus was on concentration field measurements using a laser-induced fluorescence system, additional velocity field data are presented from a recent study that used a similar discharge configuration and a particle tracking velocimetry system. Integral models provided a relatively simplistic framework for quantifying and interpreting the flow behavior in the vicinity of the boundary. The new data sets enabled defining the scale of the impact region based on the ability of integral techniques to model the flow entering and leaving this region. These data sets also offered insights into the flow behavior in the impact region and provided the basis for determining the influence of the impact region on the flow behavior.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)HY.1943-7900.0001933</doi><orcidid>https://orcid.org/0000-0003-1659-2517</orcidid><orcidid>https://orcid.org/0000-0002-6510-018X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0733-9429 |
ispartof | Journal of hydraulic engineering (New York, N.Y.), 2021-12, Vol.147 (12) |
issn | 0733-9429 1943-7900 |
language | eng |
recordid | cdi_proquest_journals_2578681993 |
source | American Society of Civil Engineers:NESLI2:Journals:2014 |
subjects | Datasets Diameters Discharge Flow Fluorescence Laser induced fluorescence Lasers Particle tracking Particle tracking velocimetry Technical Papers Velocity distribution |
title | Impact Region of Nonbuoyant Orthogonal Discharge |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A13%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20Region%20of%20Nonbuoyant%20Orthogonal%20Discharge&rft.jtitle=Journal%20of%20hydraulic%20engineering%20(New%20York,%20N.Y.)&rft.au=Ramakanth,%20A&rft.date=2021-12-01&rft.volume=147&rft.issue=12&rft.issn=0733-9429&rft.eissn=1943-7900&rft_id=info:doi/10.1061/(ASCE)HY.1943-7900.0001933&rft_dat=%3Cproquest_cross%3E2578681993%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578681993&rft_id=info:pmid/&rfr_iscdi=true |