Impact of Big Data Analysis on Nanosensors for Applied Sciences Using Neural Networks
In the current-generation wireless systems, there is a huge requirement on integrating big data which can able to predict the market trends of all application systems. Therefore, the proposed method emphasizes on the integration of nanosensors with big data analysis which will be used in healthcare...
Gespeichert in:
Veröffentlicht in: | Journal of nanomaterials 2021, Vol.2021, p.1-9 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Journal of nanomaterials |
container_volume | 2021 |
creator | Shitharth, S. Meshram, Pratiksha Kshirsagar, Pravin R. Manoharan, Hariprasath Tirth, Vineet Sundramurthy, Venkatesa Prabhu |
description | In the current-generation wireless systems, there is a huge requirement on integrating big data which can able to predict the market trends of all application systems. Therefore, the proposed method emphasizes on the integration of nanosensors with big data analysis which will be used in healthcare applications. Also, safety precautions are considered when this nanosensor is integrated where depth and reflection of signals are also observed using different time samples. In addition, to analyze the effect of nanosensors, six fundamental scenarios that provide good impact on real-time applications are also deliberated. Moreover, for proving the adeptness of the proposed method, the results are equipped in both online and offline analyses for investigating error measurement, sensitivity, and permeability parameters. Since nanosensors are introduced, the efficiency of the projected technique is increased by implementing media access control (MAC) protocol with recurrent neural network (RNN). Further, after observing the simulation results, it is proved that the proposed method is more effective for an average percentile of 67% when compared to the existing methods. |
doi_str_mv | 10.1155/2021/4927607 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2578644658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578644658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-21897a2cf1b64574be7aa6b4a83d86278860407473350e2be10fd8cd40a904063</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqWw4wMssYRQ2_Ery9LyqFSVBXRtOYlTXNI4eFJV_XtStWLJ6o50j0ZXB6FbSh4pFWLECKMjnjEliTpDAyq1Sjhl2fnfTcklugJYE8JFJtgALWeb1hYdDhV-8is8tZ3F48bWe_CAQ4MXtgngGggRcBUiHrdt7V2JPwrvmsIBXoJvVnjhttHWfXS7EL_hGl1UtgZ3c8ohWr48f07ekvn762wynidFmqouYVRnyrKiornkQvHcKWtlzq1OSy2Z0loSThRXaSqIY7mjpCp1UXJis76Q6RDdHf-2MfxsHXRmHbaxnw-GCaUl51Lonno4UkUMANFVpo1-Y-PeUGIO4sxBnDmJ6_H7I_7lm9Lu_P_0L8xjayU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578644658</pqid></control><display><type>article</type><title>Impact of Big Data Analysis on Nanosensors for Applied Sciences Using Neural Networks</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Shitharth, S. ; Meshram, Pratiksha ; Kshirsagar, Pravin R. ; Manoharan, Hariprasath ; Tirth, Vineet ; Sundramurthy, Venkatesa Prabhu</creator><contributor>R, Lakshmipathy ; Lakshmipathy R</contributor><creatorcontrib>Shitharth, S. ; Meshram, Pratiksha ; Kshirsagar, Pravin R. ; Manoharan, Hariprasath ; Tirth, Vineet ; Sundramurthy, Venkatesa Prabhu ; R, Lakshmipathy ; Lakshmipathy R</creatorcontrib><description>In the current-generation wireless systems, there is a huge requirement on integrating big data which can able to predict the market trends of all application systems. Therefore, the proposed method emphasizes on the integration of nanosensors with big data analysis which will be used in healthcare applications. Also, safety precautions are considered when this nanosensor is integrated where depth and reflection of signals are also observed using different time samples. In addition, to analyze the effect of nanosensors, six fundamental scenarios that provide good impact on real-time applications are also deliberated. Moreover, for proving the adeptness of the proposed method, the results are equipped in both online and offline analyses for investigating error measurement, sensitivity, and permeability parameters. Since nanosensors are introduced, the efficiency of the projected technique is increased by implementing media access control (MAC) protocol with recurrent neural network (RNN). Further, after observing the simulation results, it is proved that the proposed method is more effective for an average percentile of 67% when compared to the existing methods.</description><identifier>ISSN: 1687-4110</identifier><identifier>EISSN: 1687-4129</identifier><identifier>DOI: 10.1155/2021/4927607</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Access control ; Algorithms ; Artificial intelligence ; Big Data ; Cognition & reasoning ; Coronaviruses ; Data analysis ; Design ; Error analysis ; Impact analysis ; Methods ; Nanomaterials ; Nanoparticles ; Nanosensors ; Nanotechnology ; Parameter sensitivity ; Recurrent neural networks ; Sensors ; Signal reflection</subject><ispartof>Journal of nanomaterials, 2021, Vol.2021, p.1-9</ispartof><rights>Copyright © 2021 S. Shitharth et al.</rights><rights>Copyright © 2021 S. Shitharth et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-21897a2cf1b64574be7aa6b4a83d86278860407473350e2be10fd8cd40a904063</citedby><cites>FETCH-LOGICAL-c337t-21897a2cf1b64574be7aa6b4a83d86278860407473350e2be10fd8cd40a904063</cites><orcidid>0000-0003-1101-6051 ; 0000-0002-4931-724X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,4010,27904,27905,27906</link.rule.ids></links><search><contributor>R, Lakshmipathy</contributor><contributor>Lakshmipathy R</contributor><creatorcontrib>Shitharth, S.</creatorcontrib><creatorcontrib>Meshram, Pratiksha</creatorcontrib><creatorcontrib>Kshirsagar, Pravin R.</creatorcontrib><creatorcontrib>Manoharan, Hariprasath</creatorcontrib><creatorcontrib>Tirth, Vineet</creatorcontrib><creatorcontrib>Sundramurthy, Venkatesa Prabhu</creatorcontrib><title>Impact of Big Data Analysis on Nanosensors for Applied Sciences Using Neural Networks</title><title>Journal of nanomaterials</title><description>In the current-generation wireless systems, there is a huge requirement on integrating big data which can able to predict the market trends of all application systems. Therefore, the proposed method emphasizes on the integration of nanosensors with big data analysis which will be used in healthcare applications. Also, safety precautions are considered when this nanosensor is integrated where depth and reflection of signals are also observed using different time samples. In addition, to analyze the effect of nanosensors, six fundamental scenarios that provide good impact on real-time applications are also deliberated. Moreover, for proving the adeptness of the proposed method, the results are equipped in both online and offline analyses for investigating error measurement, sensitivity, and permeability parameters. Since nanosensors are introduced, the efficiency of the projected technique is increased by implementing media access control (MAC) protocol with recurrent neural network (RNN). Further, after observing the simulation results, it is proved that the proposed method is more effective for an average percentile of 67% when compared to the existing methods.</description><subject>Access control</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Big Data</subject><subject>Cognition & reasoning</subject><subject>Coronaviruses</subject><subject>Data analysis</subject><subject>Design</subject><subject>Error analysis</subject><subject>Impact analysis</subject><subject>Methods</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanosensors</subject><subject>Nanotechnology</subject><subject>Parameter sensitivity</subject><subject>Recurrent neural networks</subject><subject>Sensors</subject><subject>Signal reflection</subject><issn>1687-4110</issn><issn>1687-4129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtOwzAQRS0EEqWw4wMssYRQ2_Ery9LyqFSVBXRtOYlTXNI4eFJV_XtStWLJ6o50j0ZXB6FbSh4pFWLECKMjnjEliTpDAyq1Sjhl2fnfTcklugJYE8JFJtgALWeb1hYdDhV-8is8tZ3F48bWe_CAQ4MXtgngGggRcBUiHrdt7V2JPwrvmsIBXoJvVnjhttHWfXS7EL_hGl1UtgZ3c8ohWr48f07ekvn762wynidFmqouYVRnyrKiornkQvHcKWtlzq1OSy2Z0loSThRXaSqIY7mjpCp1UXJis76Q6RDdHf-2MfxsHXRmHbaxnw-GCaUl51Lonno4UkUMANFVpo1-Y-PeUGIO4sxBnDmJ6_H7I_7lm9Lu_P_0L8xjayU</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Shitharth, S.</creator><creator>Meshram, Pratiksha</creator><creator>Kshirsagar, Pravin R.</creator><creator>Manoharan, Hariprasath</creator><creator>Tirth, Vineet</creator><creator>Sundramurthy, Venkatesa Prabhu</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-1101-6051</orcidid><orcidid>https://orcid.org/0000-0002-4931-724X</orcidid></search><sort><creationdate>2021</creationdate><title>Impact of Big Data Analysis on Nanosensors for Applied Sciences Using Neural Networks</title><author>Shitharth, S. ; Meshram, Pratiksha ; Kshirsagar, Pravin R. ; Manoharan, Hariprasath ; Tirth, Vineet ; Sundramurthy, Venkatesa Prabhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-21897a2cf1b64574be7aa6b4a83d86278860407473350e2be10fd8cd40a904063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Access control</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Big Data</topic><topic>Cognition & reasoning</topic><topic>Coronaviruses</topic><topic>Data analysis</topic><topic>Design</topic><topic>Error analysis</topic><topic>Impact analysis</topic><topic>Methods</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanosensors</topic><topic>Nanotechnology</topic><topic>Parameter sensitivity</topic><topic>Recurrent neural networks</topic><topic>Sensors</topic><topic>Signal reflection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shitharth, S.</creatorcontrib><creatorcontrib>Meshram, Pratiksha</creatorcontrib><creatorcontrib>Kshirsagar, Pravin R.</creatorcontrib><creatorcontrib>Manoharan, Hariprasath</creatorcontrib><creatorcontrib>Tirth, Vineet</creatorcontrib><creatorcontrib>Sundramurthy, Venkatesa Prabhu</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of nanomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shitharth, S.</au><au>Meshram, Pratiksha</au><au>Kshirsagar, Pravin R.</au><au>Manoharan, Hariprasath</au><au>Tirth, Vineet</au><au>Sundramurthy, Venkatesa Prabhu</au><au>R, Lakshmipathy</au><au>Lakshmipathy R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of Big Data Analysis on Nanosensors for Applied Sciences Using Neural Networks</atitle><jtitle>Journal of nanomaterials</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1687-4110</issn><eissn>1687-4129</eissn><abstract>In the current-generation wireless systems, there is a huge requirement on integrating big data which can able to predict the market trends of all application systems. Therefore, the proposed method emphasizes on the integration of nanosensors with big data analysis which will be used in healthcare applications. Also, safety precautions are considered when this nanosensor is integrated where depth and reflection of signals are also observed using different time samples. In addition, to analyze the effect of nanosensors, six fundamental scenarios that provide good impact on real-time applications are also deliberated. Moreover, for proving the adeptness of the proposed method, the results are equipped in both online and offline analyses for investigating error measurement, sensitivity, and permeability parameters. Since nanosensors are introduced, the efficiency of the projected technique is increased by implementing media access control (MAC) protocol with recurrent neural network (RNN). Further, after observing the simulation results, it is proved that the proposed method is more effective for an average percentile of 67% when compared to the existing methods.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/4927607</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1101-6051</orcidid><orcidid>https://orcid.org/0000-0002-4931-724X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-4110 |
ispartof | Journal of nanomaterials, 2021, Vol.2021, p.1-9 |
issn | 1687-4110 1687-4129 |
language | eng |
recordid | cdi_proquest_journals_2578644658 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Access control Algorithms Artificial intelligence Big Data Cognition & reasoning Coronaviruses Data analysis Design Error analysis Impact analysis Methods Nanomaterials Nanoparticles Nanosensors Nanotechnology Parameter sensitivity Recurrent neural networks Sensors Signal reflection |
title | Impact of Big Data Analysis on Nanosensors for Applied Sciences Using Neural Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A01%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20Big%20Data%20Analysis%20on%20Nanosensors%20for%20Applied%20Sciences%20Using%20Neural%20Networks&rft.jtitle=Journal%20of%20nanomaterials&rft.au=Shitharth,%20S.&rft.date=2021&rft.volume=2021&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1687-4110&rft.eissn=1687-4129&rft_id=info:doi/10.1155/2021/4927607&rft_dat=%3Cproquest_cross%3E2578644658%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578644658&rft_id=info:pmid/&rfr_iscdi=true |