A novel deep recommend model based on rating matrix and item attributes
Traditional recommendation systems only consider the content of users to predict the rating of items in the recommendation process, and ignore the impact of other factors on the recommendation process except for the user-item rating matrix. Recommendation models that are based on item attributes can...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent information systems 2021-10, Vol.57 (2), p.295-319 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 319 |
---|---|
container_issue | 2 |
container_start_page | 295 |
container_title | Journal of intelligent information systems |
container_volume | 57 |
creator | Sun, Liping Liu, Xiaoqing Liu, Yuanjun Wang, Tao Guo, Liangmin Zheng, Xiaoyao Luo, Yonglong |
description | Traditional recommendation systems only consider the content of users to predict the rating of items in the recommendation process, and ignore the impact of other factors on the recommendation process except for the user-item rating matrix. Recommendation models that are based on item attributes can portray user preferences and item characteristics from item attribute information, which alleviates the sparseness of rating data to a certain extent. However, they do not consider the potential factors of users and items in the rating matrix. The advantage of deep learning methods in feature representation and feature learning is that they can extract the deep sublinear features of users and items contained in the rating matrix and item attributes. To further improve the quality of recommendation, we proposes the genre rate neural network recommendation (GRNNRec) model, which integrates item attributes based on deep learning. This model integrates the user-item rating matrix and item attributes into a deep neural network to characterize the performance of both in low-dimensional space. First, we use static coding to characterize the properties of the items. Second, we use feature mapping and feature concatenation methods to learn the higher-order features of both continuously. Finally, through the periodic learning rate and the decay rate, we achieve rating prediction. The experiments on different recommendation datasets demonstrate that our model can significantly improve the accuracy of rating prediction in recommendation systems. |
doi_str_mv | 10.1007/s10844-021-00644-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2578529661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578529661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-27c0cfb07638c653689a8224a0338b1f19ac4e4f08ed5cb32c25480efc800c963</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SSbLLJsRRthYIXPYdsdrZs6e7WZCv13xtdwZun-eB5Z-Ah5JbDPQcoHxIHUxQMBGcAOnenMzLjqpSs1KU6JzOwQjFrQVySq5R2AGCNhhlZLWg_fOCe1ogHGjEMXYd9TbuhzsvKJ6zp0NPox7bf0s6PsT1Rn4F2xI76Mc_VccR0TS4av09481vn5O3p8XW5ZpuX1fNysWFBcjsyUQYITQWlliZoJbWx3ghReJDSVLzh1ocCiwYM1ipUUgShCgPYBAMQrJZzcjfdPcTh_YhpdLvhGPv80glVGiWs1jxTYqJCHFKK2LhDbDsfPx0H9y3MTcJcFuZ-hLlTDskplDLcbzH-nf4n9QUTwm2f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578529661</pqid></control><display><type>article</type><title>A novel deep recommend model based on rating matrix and item attributes</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sun, Liping ; Liu, Xiaoqing ; Liu, Yuanjun ; Wang, Tao ; Guo, Liangmin ; Zheng, Xiaoyao ; Luo, Yonglong</creator><creatorcontrib>Sun, Liping ; Liu, Xiaoqing ; Liu, Yuanjun ; Wang, Tao ; Guo, Liangmin ; Zheng, Xiaoyao ; Luo, Yonglong</creatorcontrib><description>Traditional recommendation systems only consider the content of users to predict the rating of items in the recommendation process, and ignore the impact of other factors on the recommendation process except for the user-item rating matrix. Recommendation models that are based on item attributes can portray user preferences and item characteristics from item attribute information, which alleviates the sparseness of rating data to a certain extent. However, they do not consider the potential factors of users and items in the rating matrix. The advantage of deep learning methods in feature representation and feature learning is that they can extract the deep sublinear features of users and items contained in the rating matrix and item attributes. To further improve the quality of recommendation, we proposes the genre rate neural network recommendation (GRNNRec) model, which integrates item attributes based on deep learning. This model integrates the user-item rating matrix and item attributes into a deep neural network to characterize the performance of both in low-dimensional space. First, we use static coding to characterize the properties of the items. Second, we use feature mapping and feature concatenation methods to learn the higher-order features of both continuously. Finally, through the periodic learning rate and the decay rate, we achieve rating prediction. The experiments on different recommendation datasets demonstrate that our model can significantly improve the accuracy of rating prediction in recommendation systems.</description><identifier>ISSN: 0925-9902</identifier><identifier>EISSN: 1573-7675</identifier><identifier>DOI: 10.1007/s10844-021-00644-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Artificial neural networks ; Computer Science ; Data Structures and Information Theory ; Decay rate ; Deep learning ; Feature extraction ; Information Storage and Retrieval ; IT in Business ; Machine learning ; Natural Language Processing (NLP) ; Neural networks ; Recommender systems</subject><ispartof>Journal of intelligent information systems, 2021-10, Vol.57 (2), p.295-319</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-27c0cfb07638c653689a8224a0338b1f19ac4e4f08ed5cb32c25480efc800c963</citedby><cites>FETCH-LOGICAL-c319t-27c0cfb07638c653689a8224a0338b1f19ac4e4f08ed5cb32c25480efc800c963</cites><orcidid>0000-0003-4987-0376</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10844-021-00644-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10844-021-00644-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Sun, Liping</creatorcontrib><creatorcontrib>Liu, Xiaoqing</creatorcontrib><creatorcontrib>Liu, Yuanjun</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Guo, Liangmin</creatorcontrib><creatorcontrib>Zheng, Xiaoyao</creatorcontrib><creatorcontrib>Luo, Yonglong</creatorcontrib><title>A novel deep recommend model based on rating matrix and item attributes</title><title>Journal of intelligent information systems</title><addtitle>J Intell Inf Syst</addtitle><description>Traditional recommendation systems only consider the content of users to predict the rating of items in the recommendation process, and ignore the impact of other factors on the recommendation process except for the user-item rating matrix. Recommendation models that are based on item attributes can portray user preferences and item characteristics from item attribute information, which alleviates the sparseness of rating data to a certain extent. However, they do not consider the potential factors of users and items in the rating matrix. The advantage of deep learning methods in feature representation and feature learning is that they can extract the deep sublinear features of users and items contained in the rating matrix and item attributes. To further improve the quality of recommendation, we proposes the genre rate neural network recommendation (GRNNRec) model, which integrates item attributes based on deep learning. This model integrates the user-item rating matrix and item attributes into a deep neural network to characterize the performance of both in low-dimensional space. First, we use static coding to characterize the properties of the items. Second, we use feature mapping and feature concatenation methods to learn the higher-order features of both continuously. Finally, through the periodic learning rate and the decay rate, we achieve rating prediction. The experiments on different recommendation datasets demonstrate that our model can significantly improve the accuracy of rating prediction in recommendation systems.</description><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Decay rate</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Information Storage and Retrieval</subject><subject>IT in Business</subject><subject>Machine learning</subject><subject>Natural Language Processing (NLP)</subject><subject>Neural networks</subject><subject>Recommender systems</subject><issn>0925-9902</issn><issn>1573-7675</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SSbLLJsRRthYIXPYdsdrZs6e7WZCv13xtdwZun-eB5Z-Ah5JbDPQcoHxIHUxQMBGcAOnenMzLjqpSs1KU6JzOwQjFrQVySq5R2AGCNhhlZLWg_fOCe1ogHGjEMXYd9TbuhzsvKJ6zp0NPox7bf0s6PsT1Rn4F2xI76Mc_VccR0TS4av09481vn5O3p8XW5ZpuX1fNysWFBcjsyUQYITQWlliZoJbWx3ghReJDSVLzh1ocCiwYM1ipUUgShCgPYBAMQrJZzcjfdPcTh_YhpdLvhGPv80glVGiWs1jxTYqJCHFKK2LhDbDsfPx0H9y3MTcJcFuZ-hLlTDskplDLcbzH-nf4n9QUTwm2f</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Sun, Liping</creator><creator>Liu, Xiaoqing</creator><creator>Liu, Yuanjun</creator><creator>Wang, Tao</creator><creator>Guo, Liangmin</creator><creator>Zheng, Xiaoyao</creator><creator>Luo, Yonglong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-4987-0376</orcidid></search><sort><creationdate>20211001</creationdate><title>A novel deep recommend model based on rating matrix and item attributes</title><author>Sun, Liping ; Liu, Xiaoqing ; Liu, Yuanjun ; Wang, Tao ; Guo, Liangmin ; Zheng, Xiaoyao ; Luo, Yonglong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-27c0cfb07638c653689a8224a0338b1f19ac4e4f08ed5cb32c25480efc800c963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Decay rate</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Information Storage and Retrieval</topic><topic>IT in Business</topic><topic>Machine learning</topic><topic>Natural Language Processing (NLP)</topic><topic>Neural networks</topic><topic>Recommender systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Liping</creatorcontrib><creatorcontrib>Liu, Xiaoqing</creatorcontrib><creatorcontrib>Liu, Yuanjun</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Guo, Liangmin</creatorcontrib><creatorcontrib>Zheng, Xiaoyao</creatorcontrib><creatorcontrib>Luo, Yonglong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Liping</au><au>Liu, Xiaoqing</au><au>Liu, Yuanjun</au><au>Wang, Tao</au><au>Guo, Liangmin</au><au>Zheng, Xiaoyao</au><au>Luo, Yonglong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel deep recommend model based on rating matrix and item attributes</atitle><jtitle>Journal of intelligent information systems</jtitle><stitle>J Intell Inf Syst</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>57</volume><issue>2</issue><spage>295</spage><epage>319</epage><pages>295-319</pages><issn>0925-9902</issn><eissn>1573-7675</eissn><abstract>Traditional recommendation systems only consider the content of users to predict the rating of items in the recommendation process, and ignore the impact of other factors on the recommendation process except for the user-item rating matrix. Recommendation models that are based on item attributes can portray user preferences and item characteristics from item attribute information, which alleviates the sparseness of rating data to a certain extent. However, they do not consider the potential factors of users and items in the rating matrix. The advantage of deep learning methods in feature representation and feature learning is that they can extract the deep sublinear features of users and items contained in the rating matrix and item attributes. To further improve the quality of recommendation, we proposes the genre rate neural network recommendation (GRNNRec) model, which integrates item attributes based on deep learning. This model integrates the user-item rating matrix and item attributes into a deep neural network to characterize the performance of both in low-dimensional space. First, we use static coding to characterize the properties of the items. Second, we use feature mapping and feature concatenation methods to learn the higher-order features of both continuously. Finally, through the periodic learning rate and the decay rate, we achieve rating prediction. The experiments on different recommendation datasets demonstrate that our model can significantly improve the accuracy of rating prediction in recommendation systems.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10844-021-00644-x</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0003-4987-0376</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-9902 |
ispartof | Journal of intelligent information systems, 2021-10, Vol.57 (2), p.295-319 |
issn | 0925-9902 1573-7675 |
language | eng |
recordid | cdi_proquest_journals_2578529661 |
source | SpringerLink Journals - AutoHoldings |
subjects | Artificial Intelligence Artificial neural networks Computer Science Data Structures and Information Theory Decay rate Deep learning Feature extraction Information Storage and Retrieval IT in Business Machine learning Natural Language Processing (NLP) Neural networks Recommender systems |
title | A novel deep recommend model based on rating matrix and item attributes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A31%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20deep%20recommend%20model%20based%20on%20rating%20matrix%20and%20item%20attributes&rft.jtitle=Journal%20of%20intelligent%20information%20systems&rft.au=Sun,%20Liping&rft.date=2021-10-01&rft.volume=57&rft.issue=2&rft.spage=295&rft.epage=319&rft.pages=295-319&rft.issn=0925-9902&rft.eissn=1573-7675&rft_id=info:doi/10.1007/s10844-021-00644-x&rft_dat=%3Cproquest_cross%3E2578529661%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578529661&rft_id=info:pmid/&rfr_iscdi=true |