On the Degree of Nonlinearity of the Coordinate Polynomials for a Product of Transformations of a Binary Vector Space

We construct a nonnegative integer matrix to evaluate the matrix of nonlinearity characteristics for the coordinate polynomials of a product of transformations of a binary vector space. The matrix of the characteristics of the transformation is defined by the degrees of nonlinearity of the derivativ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied and industrial mathematics 2021-04, Vol.15 (2), p.212-222
1. Verfasser: Fomichev, V. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 222
container_issue 2
container_start_page 212
container_title Journal of applied and industrial mathematics
container_volume 15
creator Fomichev, V. M.
description We construct a nonnegative integer matrix to evaluate the matrix of nonlinearity characteristics for the coordinate polynomials of a product of transformations of a binary vector space. The matrix of the characteristics of the transformation is defined by the degrees of nonlinearity of the derivatives of all coordinate functions in each input variable. The entries of the evaluation matrix are expressed in terms of the characteristics of the coordinate polynomials of the multiplied transformations. Calculation of the evaluation matrix is easier than calculating the exact values of the characteristics. The estimation method is extended to an arbitrary number of multiplied transformations. Computational examples are given that in particular show the accuracy of the obtained estimates and the domain of their nontriviality.
doi_str_mv 10.1134/S1990478921020034
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2578503052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578503052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2314-d353184fb61cb35ae4be9b971a2c690dbac6962ab0958b783bfbd477fe824caa3</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EElXpA3CzxDngv8TxEQoUpIpWauEa2c6mBLV2sZND3x5HRXBAnHZ3_M2stQhdUnJNKRc3K6oUEbJUjBJGCBcnaDRImZBKnv70pTpHkxhbQzhlBS8KNkL9wuHuHfA9bAIA9g1-8W7bOtCh7Q7DPLxOvQ9163QHeOm3B-d3rd5G3PiANV4GX_e2G9h10C4mdae71rs4SBrfJWM44DewXeJXe23hAp01KQAm33WMXh8f1tOnbL6YPU9v55llnIqs5jmnpWhMQa3huQZhQBklqWa2UKQ2OpWCaUNUXhpZctOYWkjZQMmE1ZqP0dUxdx_8Zw-xqz58H1xaWbFcljnhJGeJokfKBh9jgKbah3aX_lxRUg0Hrv4cOHnY0RMT6zYQfpP_N30Bq7t9UA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578503052</pqid></control><display><type>article</type><title>On the Degree of Nonlinearity of the Coordinate Polynomials for a Product of Transformations of a Binary Vector Space</title><source>SpringerLink (Online service)</source><creator>Fomichev, V. M.</creator><creatorcontrib>Fomichev, V. M.</creatorcontrib><description>We construct a nonnegative integer matrix to evaluate the matrix of nonlinearity characteristics for the coordinate polynomials of a product of transformations of a binary vector space. The matrix of the characteristics of the transformation is defined by the degrees of nonlinearity of the derivatives of all coordinate functions in each input variable. The entries of the evaluation matrix are expressed in terms of the characteristics of the coordinate polynomials of the multiplied transformations. Calculation of the evaluation matrix is easier than calculating the exact values of the characteristics. The estimation method is extended to an arbitrary number of multiplied transformations. Computational examples are given that in particular show the accuracy of the obtained estimates and the domain of their nontriviality.</description><identifier>ISSN: 1990-4789</identifier><identifier>EISSN: 1990-4797</identifier><identifier>DOI: 10.1134/S1990478921020034</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Nonlinearity ; Polynomials ; Transformations (mathematics)</subject><ispartof>Journal of applied and industrial mathematics, 2021-04, Vol.15 (2), p.212-222</ispartof><rights>Pleiades Publishing, Ltd. 2021</rights><rights>Pleiades Publishing, Ltd. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2314-d353184fb61cb35ae4be9b971a2c690dbac6962ab0958b783bfbd477fe824caa3</citedby><cites>FETCH-LOGICAL-c2314-d353184fb61cb35ae4be9b971a2c690dbac6962ab0958b783bfbd477fe824caa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1990478921020034$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1990478921020034$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Fomichev, V. M.</creatorcontrib><title>On the Degree of Nonlinearity of the Coordinate Polynomials for a Product of Transformations of a Binary Vector Space</title><title>Journal of applied and industrial mathematics</title><addtitle>J. Appl. Ind. Math</addtitle><description>We construct a nonnegative integer matrix to evaluate the matrix of nonlinearity characteristics for the coordinate polynomials of a product of transformations of a binary vector space. The matrix of the characteristics of the transformation is defined by the degrees of nonlinearity of the derivatives of all coordinate functions in each input variable. The entries of the evaluation matrix are expressed in terms of the characteristics of the coordinate polynomials of the multiplied transformations. Calculation of the evaluation matrix is easier than calculating the exact values of the characteristics. The estimation method is extended to an arbitrary number of multiplied transformations. Computational examples are given that in particular show the accuracy of the obtained estimates and the domain of their nontriviality.</description><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinearity</subject><subject>Polynomials</subject><subject>Transformations (mathematics)</subject><issn>1990-4789</issn><issn>1990-4797</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EElXpA3CzxDngv8TxEQoUpIpWauEa2c6mBLV2sZND3x5HRXBAnHZ3_M2stQhdUnJNKRc3K6oUEbJUjBJGCBcnaDRImZBKnv70pTpHkxhbQzhlBS8KNkL9wuHuHfA9bAIA9g1-8W7bOtCh7Q7DPLxOvQ9163QHeOm3B-d3rd5G3PiANV4GX_e2G9h10C4mdae71rs4SBrfJWM44DewXeJXe23hAp01KQAm33WMXh8f1tOnbL6YPU9v55llnIqs5jmnpWhMQa3huQZhQBklqWa2UKQ2OpWCaUNUXhpZctOYWkjZQMmE1ZqP0dUxdx_8Zw-xqz58H1xaWbFcljnhJGeJokfKBh9jgKbah3aX_lxRUg0Hrv4cOHnY0RMT6zYQfpP_N30Bq7t9UA</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Fomichev, V. M.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope></search><sort><creationdate>20210401</creationdate><title>On the Degree of Nonlinearity of the Coordinate Polynomials for a Product of Transformations of a Binary Vector Space</title><author>Fomichev, V. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2314-d353184fb61cb35ae4be9b971a2c690dbac6962ab0958b783bfbd477fe824caa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinearity</topic><topic>Polynomials</topic><topic>Transformations (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fomichev, V. M.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of applied and industrial mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fomichev, V. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Degree of Nonlinearity of the Coordinate Polynomials for a Product of Transformations of a Binary Vector Space</atitle><jtitle>Journal of applied and industrial mathematics</jtitle><stitle>J. Appl. Ind. Math</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>15</volume><issue>2</issue><spage>212</spage><epage>222</epage><pages>212-222</pages><issn>1990-4789</issn><eissn>1990-4797</eissn><abstract>We construct a nonnegative integer matrix to evaluate the matrix of nonlinearity characteristics for the coordinate polynomials of a product of transformations of a binary vector space. The matrix of the characteristics of the transformation is defined by the degrees of nonlinearity of the derivatives of all coordinate functions in each input variable. The entries of the evaluation matrix are expressed in terms of the characteristics of the coordinate polynomials of the multiplied transformations. Calculation of the evaluation matrix is easier than calculating the exact values of the characteristics. The estimation method is extended to an arbitrary number of multiplied transformations. Computational examples are given that in particular show the accuracy of the obtained estimates and the domain of their nontriviality.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1990478921020034</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1990-4789
ispartof Journal of applied and industrial mathematics, 2021-04, Vol.15 (2), p.212-222
issn 1990-4789
1990-4797
language eng
recordid cdi_proquest_journals_2578503052
source SpringerLink (Online service)
subjects Mathematical analysis
Mathematics
Mathematics and Statistics
Nonlinearity
Polynomials
Transformations (mathematics)
title On the Degree of Nonlinearity of the Coordinate Polynomials for a Product of Transformations of a Binary Vector Space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T23%3A18%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Degree%20of%20Nonlinearity%20of%20the%20Coordinate%20Polynomials%20for%20a%20Product%20of%20Transformations%20of%20a%20Binary%20Vector%20Space&rft.jtitle=Journal%20of%20applied%20and%20industrial%20mathematics&rft.au=Fomichev,%20V.%20M.&rft.date=2021-04-01&rft.volume=15&rft.issue=2&rft.spage=212&rft.epage=222&rft.pages=212-222&rft.issn=1990-4789&rft.eissn=1990-4797&rft_id=info:doi/10.1134/S1990478921020034&rft_dat=%3Cproquest_cross%3E2578503052%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578503052&rft_id=info:pmid/&rfr_iscdi=true