Modeling a Synthesized Element of Complex Geometry Based upon Three-Dimensional and Two-Dimensional Finite Elements

This paper offers a description of an approach to modeling a synthesized element featuring a complex geometry. Owing to the region under examination being pre-parametrized with parameters of a parallelepiped and a synthesis of three-dimensional elements with a cubic approximation of unknown variable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lobachevskii journal of mathematics 2021-09, Vol.42 (9), p.2263-2271
Hauptverfasser: Yakupov, S. N., Kiyamov, H. G., Yakupov, N. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2271
container_issue 9
container_start_page 2263
container_title Lobachevskii journal of mathematics
container_volume 42
creator Yakupov, S. N.
Kiyamov, H. G.
Yakupov, N. M.
description This paper offers a description of an approach to modeling a synthesized element featuring a complex geometry. Owing to the region under examination being pre-parametrized with parameters of a parallelepiped and a synthesis of three-dimensional elements with a cubic approximation of unknown variables in all three directions of the region under examination and two-dimensional elements with cubic approximation of unknown variables in a thin layer on its edges, one is enabled to obtain high-precision curved aligned finite elements. The synthesized element obtained substantially expands the range of tasks which now may be solved. Specifically, it enables one to calculate the stress—strain state of coated structures, including those with local fibration while also allowing for specific surface properties which differ from the properties of the primary array to be taken into consideration, including the presence of distributed surface features resultant, for instance, from ion implantation, surface treatment and defects. Different cases have been studied to provide illustration for the method, in particular, a calculation of the stress-strain state of a three-layer plate.
doi_str_mv 10.1134/S1995080221090316
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2578499275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578499275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-a5d4055f4d78c22d1d15806b0594279f573ffb4574fcef39cba87b0c19dd85b73</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wFvA82qSTTbJUWtbhYqH1vOS3STtlt2kJlu0_npTqoiIpxnmfe8xPAAuMbrGOKc3cywlQwIRgpFEOS6OwAALLDIpC3Kc9iRne_0UnMW4RgksimIA4pPXpm3cEio437l-ZWLzYTQct6YzrofewpHvNq15h1PjO9OHHbxTMRHbjXdwsQrGZPdNYmPjnWqhchou3vyv26RxTW--M-M5OLGqjebiaw7By2S8GD1ks-fp4-h2ltWEFn2mmKaIMUs1FzUhGmvMBCoqxCQlXFrGc2sryji1tbG5rCsleIVqLLUWrOL5EFwdcjfBv25N7Mu134b0UCwJ44JKSThLFD5QdfAxBmPLTWg6FXYlRuW-2_JPt8lDDp6YWLc04Sf5f9MnePJ71Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578499275</pqid></control><display><type>article</type><title>Modeling a Synthesized Element of Complex Geometry Based upon Three-Dimensional and Two-Dimensional Finite Elements</title><source>Springer Nature - Complete Springer Journals</source><creator>Yakupov, S. N. ; Kiyamov, H. G. ; Yakupov, N. M.</creator><creatorcontrib>Yakupov, S. N. ; Kiyamov, H. G. ; Yakupov, N. M.</creatorcontrib><description>This paper offers a description of an approach to modeling a synthesized element featuring a complex geometry. Owing to the region under examination being pre-parametrized with parameters of a parallelepiped and a synthesis of three-dimensional elements with a cubic approximation of unknown variables in all three directions of the region under examination and two-dimensional elements with cubic approximation of unknown variables in a thin layer on its edges, one is enabled to obtain high-precision curved aligned finite elements. The synthesized element obtained substantially expands the range of tasks which now may be solved. Specifically, it enables one to calculate the stress—strain state of coated structures, including those with local fibration while also allowing for specific surface properties which differ from the properties of the primary array to be taken into consideration, including the presence of distributed surface features resultant, for instance, from ion implantation, surface treatment and defects. Different cases have been studied to provide illustration for the method, in particular, a calculation of the stress-strain state of a three-layer plate.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080221090316</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Approximation ; Geometry ; Ion implantation ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Modelling ; Parallelepipeds ; Probability Theory and Stochastic Processes ; Strain ; Surface properties ; Surface treatment ; Synthesis</subject><ispartof>Lobachevskii journal of mathematics, 2021-09, Vol.42 (9), p.2263-2271</ispartof><rights>Pleiades Publishing, Ltd. 2021</rights><rights>Pleiades Publishing, Ltd. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-a5d4055f4d78c22d1d15806b0594279f573ffb4574fcef39cba87b0c19dd85b73</citedby><cites>FETCH-LOGICAL-c246t-a5d4055f4d78c22d1d15806b0594279f573ffb4574fcef39cba87b0c19dd85b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080221090316$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080221090316$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Yakupov, S. N.</creatorcontrib><creatorcontrib>Kiyamov, H. G.</creatorcontrib><creatorcontrib>Yakupov, N. M.</creatorcontrib><title>Modeling a Synthesized Element of Complex Geometry Based upon Three-Dimensional and Two-Dimensional Finite Elements</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>This paper offers a description of an approach to modeling a synthesized element featuring a complex geometry. Owing to the region under examination being pre-parametrized with parameters of a parallelepiped and a synthesis of three-dimensional elements with a cubic approximation of unknown variables in all three directions of the region under examination and two-dimensional elements with cubic approximation of unknown variables in a thin layer on its edges, one is enabled to obtain high-precision curved aligned finite elements. The synthesized element obtained substantially expands the range of tasks which now may be solved. Specifically, it enables one to calculate the stress—strain state of coated structures, including those with local fibration while also allowing for specific surface properties which differ from the properties of the primary array to be taken into consideration, including the presence of distributed surface features resultant, for instance, from ion implantation, surface treatment and defects. Different cases have been studied to provide illustration for the method, in particular, a calculation of the stress-strain state of a three-layer plate.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Approximation</subject><subject>Geometry</subject><subject>Ion implantation</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Modelling</subject><subject>Parallelepipeds</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Strain</subject><subject>Surface properties</subject><subject>Surface treatment</subject><subject>Synthesis</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKs_wFvA82qSTTbJUWtbhYqH1vOS3STtlt2kJlu0_npTqoiIpxnmfe8xPAAuMbrGOKc3cywlQwIRgpFEOS6OwAALLDIpC3Kc9iRne_0UnMW4RgksimIA4pPXpm3cEio437l-ZWLzYTQct6YzrofewpHvNq15h1PjO9OHHbxTMRHbjXdwsQrGZPdNYmPjnWqhchou3vyv26RxTW--M-M5OLGqjebiaw7By2S8GD1ks-fp4-h2ltWEFn2mmKaIMUs1FzUhGmvMBCoqxCQlXFrGc2sryji1tbG5rCsleIVqLLUWrOL5EFwdcjfBv25N7Mu134b0UCwJ44JKSThLFD5QdfAxBmPLTWg6FXYlRuW-2_JPt8lDDp6YWLc04Sf5f9MnePJ71Q</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Yakupov, S. N.</creator><creator>Kiyamov, H. G.</creator><creator>Yakupov, N. M.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210901</creationdate><title>Modeling a Synthesized Element of Complex Geometry Based upon Three-Dimensional and Two-Dimensional Finite Elements</title><author>Yakupov, S. N. ; Kiyamov, H. G. ; Yakupov, N. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-a5d4055f4d78c22d1d15806b0594279f573ffb4574fcef39cba87b0c19dd85b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Approximation</topic><topic>Geometry</topic><topic>Ion implantation</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Modelling</topic><topic>Parallelepipeds</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Strain</topic><topic>Surface properties</topic><topic>Surface treatment</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yakupov, S. N.</creatorcontrib><creatorcontrib>Kiyamov, H. G.</creatorcontrib><creatorcontrib>Yakupov, N. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yakupov, S. N.</au><au>Kiyamov, H. G.</au><au>Yakupov, N. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling a Synthesized Element of Complex Geometry Based upon Three-Dimensional and Two-Dimensional Finite Elements</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>42</volume><issue>9</issue><spage>2263</spage><epage>2271</epage><pages>2263-2271</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>This paper offers a description of an approach to modeling a synthesized element featuring a complex geometry. Owing to the region under examination being pre-parametrized with parameters of a parallelepiped and a synthesis of three-dimensional elements with a cubic approximation of unknown variables in all three directions of the region under examination and two-dimensional elements with cubic approximation of unknown variables in a thin layer on its edges, one is enabled to obtain high-precision curved aligned finite elements. The synthesized element obtained substantially expands the range of tasks which now may be solved. Specifically, it enables one to calculate the stress—strain state of coated structures, including those with local fibration while also allowing for specific surface properties which differ from the properties of the primary array to be taken into consideration, including the presence of distributed surface features resultant, for instance, from ion implantation, surface treatment and defects. Different cases have been studied to provide illustration for the method, in particular, a calculation of the stress-strain state of a three-layer plate.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080221090316</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1995-0802
ispartof Lobachevskii journal of mathematics, 2021-09, Vol.42 (9), p.2263-2271
issn 1995-0802
1818-9962
language eng
recordid cdi_proquest_journals_2578499275
source Springer Nature - Complete Springer Journals
subjects Algebra
Analysis
Approximation
Geometry
Ion implantation
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Modelling
Parallelepipeds
Probability Theory and Stochastic Processes
Strain
Surface properties
Surface treatment
Synthesis
title Modeling a Synthesized Element of Complex Geometry Based upon Three-Dimensional and Two-Dimensional Finite Elements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A52%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20a%20Synthesized%20Element%20of%20Complex%20Geometry%20Based%20upon%20Three-Dimensional%20and%20Two-Dimensional%20Finite%20Elements&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Yakupov,%20S.%20N.&rft.date=2021-09-01&rft.volume=42&rft.issue=9&rft.spage=2263&rft.epage=2271&rft.pages=2263-2271&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080221090316&rft_dat=%3Cproquest_cross%3E2578499275%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578499275&rft_id=info:pmid/&rfr_iscdi=true