Metric Geometry of Spaces of Persistence Diagrams
Persistence diagrams are objects that play a central role in topological data analysis. In the present article, we investigate the local and global geometric properties of spaces of persistence diagrams. In order to do this, we construct a family of functors \(\mathcal{D}_p\), \(1\leq p \leq\infty\)...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-08 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Che, Mauricio Galaz-García, Fernando Guijarro, Luis Ingrid Amaranta Membrillo Solis |
description | Persistence diagrams are objects that play a central role in topological data analysis. In the present article, we investigate the local and global geometric properties of spaces of persistence diagrams. In order to do this, we construct a family of functors \(\mathcal{D}_p\), \(1\leq p \leq\infty\), that assign, to each metric pair \((X,A)\), a pointed metric space \(\mathcal{D}_p(X,A)\). Moreover, we show that \(\mathcal{D}_{\infty}\) is sequentially continuous with respect to the Gromov-Hausdorff convergence of metric pairs, and we prove that \(\mathcal{D}_p\) preserves several useful metric properties, such as completeness and separability, for \(p \in [1,\infty)\), and geodesicity and non-negative curvature in the sense of Alexandrov, for \(p=2\). For the latter case, we describe the metric of the space of directions at the empty diagram. We also show that the Fréchet mean set of a Borel probability measure on \(\mathcal{D}_p(X,A)\), \(1\leq p \leq\infty\), with finite second moment and compact support is non-empty. As an application of our geometric framework, we prove that the space of Euclidean persistence diagrams, \(\mathcal{D}_{p}(\mathbb{R}^{2n},\Delta_n)\), \(1\leq n\) and \(1\leq p |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2578272110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578272110</sourcerecordid><originalsourceid>FETCH-proquest_journals_25782721103</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw9E0tKcpMVnBPzc8FsioV8tMUggsSk1OLQayA1KLizOKS1LzkVAWXzMT0osTcYh4G1rTEnOJUXijNzaDs5hri7KFbUJRfWJpaXBKflV9alAeUijcyNbcwMjcyNDQwJk4VAH7OMyI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578272110</pqid></control><display><type>article</type><title>Metric Geometry of Spaces of Persistence Diagrams</title><source>Freely Accessible Journals</source><creator>Che, Mauricio ; Galaz-García, Fernando ; Guijarro, Luis ; Ingrid Amaranta Membrillo Solis</creator><creatorcontrib>Che, Mauricio ; Galaz-García, Fernando ; Guijarro, Luis ; Ingrid Amaranta Membrillo Solis</creatorcontrib><description>Persistence diagrams are objects that play a central role in topological data analysis. In the present article, we investigate the local and global geometric properties of spaces of persistence diagrams. In order to do this, we construct a family of functors \(\mathcal{D}_p\), \(1\leq p \leq\infty\), that assign, to each metric pair \((X,A)\), a pointed metric space \(\mathcal{D}_p(X,A)\). Moreover, we show that \(\mathcal{D}_{\infty}\) is sequentially continuous with respect to the Gromov-Hausdorff convergence of metric pairs, and we prove that \(\mathcal{D}_p\) preserves several useful metric properties, such as completeness and separability, for \(p \in [1,\infty)\), and geodesicity and non-negative curvature in the sense of Alexandrov, for \(p=2\). For the latter case, we describe the metric of the space of directions at the empty diagram. We also show that the Fréchet mean set of a Borel probability measure on \(\mathcal{D}_p(X,A)\), \(1\leq p \leq\infty\), with finite second moment and compact support is non-empty. As an application of our geometric framework, we prove that the space of Euclidean persistence diagrams, \(\mathcal{D}_{p}(\mathbb{R}^{2n},\Delta_n)\), \(1\leq n\) and \(1\leq p<\infty\), has infinite covering, Hausdorff, asymptotic, Assouad, and Assouad-Nagata dimensions.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Data analysis ; Euclidean geometry ; Geometry ; Metric space</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>782,786</link.rule.ids></links><search><creatorcontrib>Che, Mauricio</creatorcontrib><creatorcontrib>Galaz-García, Fernando</creatorcontrib><creatorcontrib>Guijarro, Luis</creatorcontrib><creatorcontrib>Ingrid Amaranta Membrillo Solis</creatorcontrib><title>Metric Geometry of Spaces of Persistence Diagrams</title><title>arXiv.org</title><description>Persistence diagrams are objects that play a central role in topological data analysis. In the present article, we investigate the local and global geometric properties of spaces of persistence diagrams. In order to do this, we construct a family of functors \(\mathcal{D}_p\), \(1\leq p \leq\infty\), that assign, to each metric pair \((X,A)\), a pointed metric space \(\mathcal{D}_p(X,A)\). Moreover, we show that \(\mathcal{D}_{\infty}\) is sequentially continuous with respect to the Gromov-Hausdorff convergence of metric pairs, and we prove that \(\mathcal{D}_p\) preserves several useful metric properties, such as completeness and separability, for \(p \in [1,\infty)\), and geodesicity and non-negative curvature in the sense of Alexandrov, for \(p=2\). For the latter case, we describe the metric of the space of directions at the empty diagram. We also show that the Fréchet mean set of a Borel probability measure on \(\mathcal{D}_p(X,A)\), \(1\leq p \leq\infty\), with finite second moment and compact support is non-empty. As an application of our geometric framework, we prove that the space of Euclidean persistence diagrams, \(\mathcal{D}_{p}(\mathbb{R}^{2n},\Delta_n)\), \(1\leq n\) and \(1\leq p<\infty\), has infinite covering, Hausdorff, asymptotic, Assouad, and Assouad-Nagata dimensions.</description><subject>Data analysis</subject><subject>Euclidean geometry</subject><subject>Geometry</subject><subject>Metric space</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw9E0tKcpMVnBPzc8FsioV8tMUggsSk1OLQayA1KLizOKS1LzkVAWXzMT0osTcYh4G1rTEnOJUXijNzaDs5hri7KFbUJRfWJpaXBKflV9alAeUijcyNbcwMjcyNDQwJk4VAH7OMyI</recordid><startdate>20240807</startdate><enddate>20240807</enddate><creator>Che, Mauricio</creator><creator>Galaz-García, Fernando</creator><creator>Guijarro, Luis</creator><creator>Ingrid Amaranta Membrillo Solis</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240807</creationdate><title>Metric Geometry of Spaces of Persistence Diagrams</title><author>Che, Mauricio ; Galaz-García, Fernando ; Guijarro, Luis ; Ingrid Amaranta Membrillo Solis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25782721103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data analysis</topic><topic>Euclidean geometry</topic><topic>Geometry</topic><topic>Metric space</topic><toplevel>online_resources</toplevel><creatorcontrib>Che, Mauricio</creatorcontrib><creatorcontrib>Galaz-García, Fernando</creatorcontrib><creatorcontrib>Guijarro, Luis</creatorcontrib><creatorcontrib>Ingrid Amaranta Membrillo Solis</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Che, Mauricio</au><au>Galaz-García, Fernando</au><au>Guijarro, Luis</au><au>Ingrid Amaranta Membrillo Solis</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Metric Geometry of Spaces of Persistence Diagrams</atitle><jtitle>arXiv.org</jtitle><date>2024-08-07</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Persistence diagrams are objects that play a central role in topological data analysis. In the present article, we investigate the local and global geometric properties of spaces of persistence diagrams. In order to do this, we construct a family of functors \(\mathcal{D}_p\), \(1\leq p \leq\infty\), that assign, to each metric pair \((X,A)\), a pointed metric space \(\mathcal{D}_p(X,A)\). Moreover, we show that \(\mathcal{D}_{\infty}\) is sequentially continuous with respect to the Gromov-Hausdorff convergence of metric pairs, and we prove that \(\mathcal{D}_p\) preserves several useful metric properties, such as completeness and separability, for \(p \in [1,\infty)\), and geodesicity and non-negative curvature in the sense of Alexandrov, for \(p=2\). For the latter case, we describe the metric of the space of directions at the empty diagram. We also show that the Fréchet mean set of a Borel probability measure on \(\mathcal{D}_p(X,A)\), \(1\leq p \leq\infty\), with finite second moment and compact support is non-empty. As an application of our geometric framework, we prove that the space of Euclidean persistence diagrams, \(\mathcal{D}_{p}(\mathbb{R}^{2n},\Delta_n)\), \(1\leq n\) and \(1\leq p<\infty\), has infinite covering, Hausdorff, asymptotic, Assouad, and Assouad-Nagata dimensions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2578272110 |
source | Freely Accessible Journals |
subjects | Data analysis Euclidean geometry Geometry Metric space |
title | Metric Geometry of Spaces of Persistence Diagrams |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-07T04%3A45%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Metric%20Geometry%20of%20Spaces%20of%20Persistence%20Diagrams&rft.jtitle=arXiv.org&rft.au=Che,%20Mauricio&rft.date=2024-08-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2578272110%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578272110&rft_id=info:pmid/&rfr_iscdi=true |