Study of Temporal Thermal Response of Microfiber Bragg Grating
Fiber Bragg grating has been successfully fabricated in the silica microfiber by the use of femtosecond laser point-by-point inscription. Temporal thermal response of the fabricated silica microfiber Bragg grating has been measured by the use of the CO 2 laser thermal excitation method, and the resu...
Gespeichert in:
Veröffentlicht in: | Photonic Sensors 2021-12, Vol.11 (4), p.387-391 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 391 |
---|---|
container_issue | 4 |
container_start_page | 387 |
container_title | Photonic Sensors |
container_volume | 11 |
creator | Liao, Changrui Yang, Tianhang Han, Jinli |
description | Fiber Bragg grating has been successfully fabricated in the silica microfiber by the use of femtosecond laser point-by-point inscription. Temporal thermal response of the fabricated silica microfiber Bragg grating has been measured by the use of the CO
2
laser thermal excitation method, and the result shows that the time constant of the microfiber Bragg grating is reduced by an order of magnitude compared with the traditional single-mode fiber Bragg grating and the measured time constant is ~ 21ms. |
doi_str_mv | 10.1007/s13320-020-0602-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2578267697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A727772752</galeid><sourcerecordid>A727772752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-93b8fe6e0592f575acd062efd13b0e9d302296c60860a7a95b494f69542926853</originalsourceid><addsrcrecordid>eNp1UF1LwzAUDaLgmPsBvhV87rxJmqR5EebQKUwEnc8hbZMaWZuZdA_796ZU8Ekuhwv3nnM_DkLXGJYYQNxGTCmBHEZwIDk7QzOCJeSioPIczTAXRS4Jw5doEaOrgBQgCyzEDN29D8fmlHmb7Ux38EHvs92nCV3KbyYefB_N2HxxdfDWVSZk90G3bbYJenB9e4UurN5Hs_jNc_Tx-LBbP-Xb183zerXNa8pgyCWtSmu4ASaJZYLpugFOjG0wrcDIhgIhktccSg5aaMmqQhaWS1YQSXjJ6BzdTHMPwX8fTRzUlz-GPq1UhImScMGlSKzlxGr13ijXWz8EXadoTOdq3xvrUn0liBAJjCQBngTpuxiDseoQXKfDSWFQo7VqslbBiGStGk8hkyYmbt-a8HfK_6If-U94xw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578267697</pqid></control><display><type>article</type><title>Study of Temporal Thermal Response of Microfiber Bragg Grating</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Liao, Changrui ; Yang, Tianhang ; Han, Jinli</creator><creatorcontrib>Liao, Changrui ; Yang, Tianhang ; Han, Jinli</creatorcontrib><description>Fiber Bragg grating has been successfully fabricated in the silica microfiber by the use of femtosecond laser point-by-point inscription. Temporal thermal response of the fabricated silica microfiber Bragg grating has been measured by the use of the CO
2
laser thermal excitation method, and the result shows that the time constant of the microfiber Bragg grating is reduced by an order of magnitude compared with the traditional single-mode fiber Bragg grating and the measured time constant is ~ 21ms.</description><identifier>ISSN: 1674-9251</identifier><identifier>EISSN: 2190-7439</identifier><identifier>DOI: 10.1007/s13320-020-0602-5</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Bragg gratings ; Carbon dioxide ; Carbon dioxide lasers ; Cooling ; Electromagnetism ; Equipment and supplies ; Fiber optics ; Inscriptions ; Lasers ; Measurement Science and Instrumentation ; Microfibers ; Micromachining ; Microwaves ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Regular ; Resistance thermometers ; RF and Optical Engineering ; Sensors ; Silica ; Silicon dioxide ; Temperature measurements ; Thermal response ; Thermoelectricity ; Time constant ; Time measurement</subject><ispartof>Photonic Sensors, 2021-12, Vol.11 (4), p.387-391</ispartof><rights>The Author(s) 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c350t-93b8fe6e0592f575acd062efd13b0e9d302296c60860a7a95b494f69542926853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13320-020-0602-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/s13320-020-0602-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27923,27924,41119,42188,51575</link.rule.ids></links><search><creatorcontrib>Liao, Changrui</creatorcontrib><creatorcontrib>Yang, Tianhang</creatorcontrib><creatorcontrib>Han, Jinli</creatorcontrib><title>Study of Temporal Thermal Response of Microfiber Bragg Grating</title><title>Photonic Sensors</title><addtitle>Photonic Sens</addtitle><description>Fiber Bragg grating has been successfully fabricated in the silica microfiber by the use of femtosecond laser point-by-point inscription. Temporal thermal response of the fabricated silica microfiber Bragg grating has been measured by the use of the CO
2
laser thermal excitation method, and the result shows that the time constant of the microfiber Bragg grating is reduced by an order of magnitude compared with the traditional single-mode fiber Bragg grating and the measured time constant is ~ 21ms.</description><subject>Bragg gratings</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide lasers</subject><subject>Cooling</subject><subject>Electromagnetism</subject><subject>Equipment and supplies</subject><subject>Fiber optics</subject><subject>Inscriptions</subject><subject>Lasers</subject><subject>Measurement Science and Instrumentation</subject><subject>Microfibers</subject><subject>Micromachining</subject><subject>Microwaves</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular</subject><subject>Resistance thermometers</subject><subject>RF and Optical Engineering</subject><subject>Sensors</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Temperature measurements</subject><subject>Thermal response</subject><subject>Thermoelectricity</subject><subject>Time constant</subject><subject>Time measurement</subject><issn>1674-9251</issn><issn>2190-7439</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1UF1LwzAUDaLgmPsBvhV87rxJmqR5EebQKUwEnc8hbZMaWZuZdA_796ZU8Ekuhwv3nnM_DkLXGJYYQNxGTCmBHEZwIDk7QzOCJeSioPIczTAXRS4Jw5doEaOrgBQgCyzEDN29D8fmlHmb7Ux38EHvs92nCV3KbyYefB_N2HxxdfDWVSZk90G3bbYJenB9e4UurN5Hs_jNc_Tx-LBbP-Xb183zerXNa8pgyCWtSmu4ASaJZYLpugFOjG0wrcDIhgIhktccSg5aaMmqQhaWS1YQSXjJ6BzdTHMPwX8fTRzUlz-GPq1UhImScMGlSKzlxGr13ijXWz8EXadoTOdq3xvrUn0liBAJjCQBngTpuxiDseoQXKfDSWFQo7VqslbBiGStGk8hkyYmbt-a8HfK_6If-U94xw</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Liao, Changrui</creator><creator>Yang, Tianhang</creator><creator>Han, Jinli</creator><general>Springer Singapore</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20211201</creationdate><title>Study of Temporal Thermal Response of Microfiber Bragg Grating</title><author>Liao, Changrui ; Yang, Tianhang ; Han, Jinli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-93b8fe6e0592f575acd062efd13b0e9d302296c60860a7a95b494f69542926853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bragg gratings</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide lasers</topic><topic>Cooling</topic><topic>Electromagnetism</topic><topic>Equipment and supplies</topic><topic>Fiber optics</topic><topic>Inscriptions</topic><topic>Lasers</topic><topic>Measurement Science and Instrumentation</topic><topic>Microfibers</topic><topic>Micromachining</topic><topic>Microwaves</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular</topic><topic>Resistance thermometers</topic><topic>RF and Optical Engineering</topic><topic>Sensors</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Temperature measurements</topic><topic>Thermal response</topic><topic>Thermoelectricity</topic><topic>Time constant</topic><topic>Time measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Changrui</creatorcontrib><creatorcontrib>Yang, Tianhang</creatorcontrib><creatorcontrib>Han, Jinli</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Photonic Sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Changrui</au><au>Yang, Tianhang</au><au>Han, Jinli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of Temporal Thermal Response of Microfiber Bragg Grating</atitle><jtitle>Photonic Sensors</jtitle><stitle>Photonic Sens</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>11</volume><issue>4</issue><spage>387</spage><epage>391</epage><pages>387-391</pages><issn>1674-9251</issn><eissn>2190-7439</eissn><abstract>Fiber Bragg grating has been successfully fabricated in the silica microfiber by the use of femtosecond laser point-by-point inscription. Temporal thermal response of the fabricated silica microfiber Bragg grating has been measured by the use of the CO
2
laser thermal excitation method, and the result shows that the time constant of the microfiber Bragg grating is reduced by an order of magnitude compared with the traditional single-mode fiber Bragg grating and the measured time constant is ~ 21ms.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s13320-020-0602-5</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-9251 |
ispartof | Photonic Sensors, 2021-12, Vol.11 (4), p.387-391 |
issn | 1674-9251 2190-7439 |
language | eng |
recordid | cdi_proquest_journals_2578267697 |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Bragg gratings Carbon dioxide Carbon dioxide lasers Cooling Electromagnetism Equipment and supplies Fiber optics Inscriptions Lasers Measurement Science and Instrumentation Microfibers Micromachining Microwaves Optical Devices Optics Photonics Physics Physics and Astronomy Regular Resistance thermometers RF and Optical Engineering Sensors Silica Silicon dioxide Temperature measurements Thermal response Thermoelectricity Time constant Time measurement |
title | Study of Temporal Thermal Response of Microfiber Bragg Grating |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T23%3A29%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20Temporal%20Thermal%20Response%20of%20Microfiber%20Bragg%20Grating&rft.jtitle=Photonic%20Sensors&rft.au=Liao,%20Changrui&rft.date=2021-12-01&rft.volume=11&rft.issue=4&rft.spage=387&rft.epage=391&rft.pages=387-391&rft.issn=1674-9251&rft.eissn=2190-7439&rft_id=info:doi/10.1007/s13320-020-0602-5&rft_dat=%3Cgale_proqu%3EA727772752%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578267697&rft_id=info:pmid/&rft_galeid=A727772752&rfr_iscdi=true |