Study of Temporal Thermal Response of Microfiber Bragg Grating

Fiber Bragg grating has been successfully fabricated in the silica microfiber by the use of femtosecond laser point-by-point inscription. Temporal thermal response of the fabricated silica microfiber Bragg grating has been measured by the use of the CO 2 laser thermal excitation method, and the resu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Photonic Sensors 2021-12, Vol.11 (4), p.387-391
Hauptverfasser: Liao, Changrui, Yang, Tianhang, Han, Jinli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 391
container_issue 4
container_start_page 387
container_title Photonic Sensors
container_volume 11
creator Liao, Changrui
Yang, Tianhang
Han, Jinli
description Fiber Bragg grating has been successfully fabricated in the silica microfiber by the use of femtosecond laser point-by-point inscription. Temporal thermal response of the fabricated silica microfiber Bragg grating has been measured by the use of the CO 2 laser thermal excitation method, and the result shows that the time constant of the microfiber Bragg grating is reduced by an order of magnitude compared with the traditional single-mode fiber Bragg grating and the measured time constant is ~ 21ms.
doi_str_mv 10.1007/s13320-020-0602-5
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2578267697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A727772752</galeid><sourcerecordid>A727772752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-93b8fe6e0592f575acd062efd13b0e9d302296c60860a7a95b494f69542926853</originalsourceid><addsrcrecordid>eNp1UF1LwzAUDaLgmPsBvhV87rxJmqR5EebQKUwEnc8hbZMaWZuZdA_796ZU8Ekuhwv3nnM_DkLXGJYYQNxGTCmBHEZwIDk7QzOCJeSioPIczTAXRS4Jw5doEaOrgBQgCyzEDN29D8fmlHmb7Ux38EHvs92nCV3KbyYefB_N2HxxdfDWVSZk90G3bbYJenB9e4UurN5Hs_jNc_Tx-LBbP-Xb183zerXNa8pgyCWtSmu4ASaJZYLpugFOjG0wrcDIhgIhktccSg5aaMmqQhaWS1YQSXjJ6BzdTHMPwX8fTRzUlz-GPq1UhImScMGlSKzlxGr13ijXWz8EXadoTOdq3xvrUn0liBAJjCQBngTpuxiDseoQXKfDSWFQo7VqslbBiGStGk8hkyYmbt-a8HfK_6If-U94xw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578267697</pqid></control><display><type>article</type><title>Study of Temporal Thermal Response of Microfiber Bragg Grating</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Liao, Changrui ; Yang, Tianhang ; Han, Jinli</creator><creatorcontrib>Liao, Changrui ; Yang, Tianhang ; Han, Jinli</creatorcontrib><description>Fiber Bragg grating has been successfully fabricated in the silica microfiber by the use of femtosecond laser point-by-point inscription. Temporal thermal response of the fabricated silica microfiber Bragg grating has been measured by the use of the CO 2 laser thermal excitation method, and the result shows that the time constant of the microfiber Bragg grating is reduced by an order of magnitude compared with the traditional single-mode fiber Bragg grating and the measured time constant is ~ 21ms.</description><identifier>ISSN: 1674-9251</identifier><identifier>EISSN: 2190-7439</identifier><identifier>DOI: 10.1007/s13320-020-0602-5</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Bragg gratings ; Carbon dioxide ; Carbon dioxide lasers ; Cooling ; Electromagnetism ; Equipment and supplies ; Fiber optics ; Inscriptions ; Lasers ; Measurement Science and Instrumentation ; Microfibers ; Micromachining ; Microwaves ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Regular ; Resistance thermometers ; RF and Optical Engineering ; Sensors ; Silica ; Silicon dioxide ; Temperature measurements ; Thermal response ; Thermoelectricity ; Time constant ; Time measurement</subject><ispartof>Photonic Sensors, 2021-12, Vol.11 (4), p.387-391</ispartof><rights>The Author(s) 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c350t-93b8fe6e0592f575acd062efd13b0e9d302296c60860a7a95b494f69542926853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13320-020-0602-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/s13320-020-0602-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27923,27924,41119,42188,51575</link.rule.ids></links><search><creatorcontrib>Liao, Changrui</creatorcontrib><creatorcontrib>Yang, Tianhang</creatorcontrib><creatorcontrib>Han, Jinli</creatorcontrib><title>Study of Temporal Thermal Response of Microfiber Bragg Grating</title><title>Photonic Sensors</title><addtitle>Photonic Sens</addtitle><description>Fiber Bragg grating has been successfully fabricated in the silica microfiber by the use of femtosecond laser point-by-point inscription. Temporal thermal response of the fabricated silica microfiber Bragg grating has been measured by the use of the CO 2 laser thermal excitation method, and the result shows that the time constant of the microfiber Bragg grating is reduced by an order of magnitude compared with the traditional single-mode fiber Bragg grating and the measured time constant is ~ 21ms.</description><subject>Bragg gratings</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide lasers</subject><subject>Cooling</subject><subject>Electromagnetism</subject><subject>Equipment and supplies</subject><subject>Fiber optics</subject><subject>Inscriptions</subject><subject>Lasers</subject><subject>Measurement Science and Instrumentation</subject><subject>Microfibers</subject><subject>Micromachining</subject><subject>Microwaves</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular</subject><subject>Resistance thermometers</subject><subject>RF and Optical Engineering</subject><subject>Sensors</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Temperature measurements</subject><subject>Thermal response</subject><subject>Thermoelectricity</subject><subject>Time constant</subject><subject>Time measurement</subject><issn>1674-9251</issn><issn>2190-7439</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1UF1LwzAUDaLgmPsBvhV87rxJmqR5EebQKUwEnc8hbZMaWZuZdA_796ZU8Ekuhwv3nnM_DkLXGJYYQNxGTCmBHEZwIDk7QzOCJeSioPIczTAXRS4Jw5doEaOrgBQgCyzEDN29D8fmlHmb7Ux38EHvs92nCV3KbyYefB_N2HxxdfDWVSZk90G3bbYJenB9e4UurN5Hs_jNc_Tx-LBbP-Xb183zerXNa8pgyCWtSmu4ASaJZYLpugFOjG0wrcDIhgIhktccSg5aaMmqQhaWS1YQSXjJ6BzdTHMPwX8fTRzUlz-GPq1UhImScMGlSKzlxGr13ijXWz8EXadoTOdq3xvrUn0liBAJjCQBngTpuxiDseoQXKfDSWFQo7VqslbBiGStGk8hkyYmbt-a8HfK_6If-U94xw</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Liao, Changrui</creator><creator>Yang, Tianhang</creator><creator>Han, Jinli</creator><general>Springer Singapore</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20211201</creationdate><title>Study of Temporal Thermal Response of Microfiber Bragg Grating</title><author>Liao, Changrui ; Yang, Tianhang ; Han, Jinli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-93b8fe6e0592f575acd062efd13b0e9d302296c60860a7a95b494f69542926853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bragg gratings</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide lasers</topic><topic>Cooling</topic><topic>Electromagnetism</topic><topic>Equipment and supplies</topic><topic>Fiber optics</topic><topic>Inscriptions</topic><topic>Lasers</topic><topic>Measurement Science and Instrumentation</topic><topic>Microfibers</topic><topic>Micromachining</topic><topic>Microwaves</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular</topic><topic>Resistance thermometers</topic><topic>RF and Optical Engineering</topic><topic>Sensors</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Temperature measurements</topic><topic>Thermal response</topic><topic>Thermoelectricity</topic><topic>Time constant</topic><topic>Time measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Changrui</creatorcontrib><creatorcontrib>Yang, Tianhang</creatorcontrib><creatorcontrib>Han, Jinli</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Photonic Sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Changrui</au><au>Yang, Tianhang</au><au>Han, Jinli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of Temporal Thermal Response of Microfiber Bragg Grating</atitle><jtitle>Photonic Sensors</jtitle><stitle>Photonic Sens</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>11</volume><issue>4</issue><spage>387</spage><epage>391</epage><pages>387-391</pages><issn>1674-9251</issn><eissn>2190-7439</eissn><abstract>Fiber Bragg grating has been successfully fabricated in the silica microfiber by the use of femtosecond laser point-by-point inscription. Temporal thermal response of the fabricated silica microfiber Bragg grating has been measured by the use of the CO 2 laser thermal excitation method, and the result shows that the time constant of the microfiber Bragg grating is reduced by an order of magnitude compared with the traditional single-mode fiber Bragg grating and the measured time constant is ~ 21ms.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s13320-020-0602-5</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1674-9251
ispartof Photonic Sensors, 2021-12, Vol.11 (4), p.387-391
issn 1674-9251
2190-7439
language eng
recordid cdi_proquest_journals_2578267697
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals
subjects Bragg gratings
Carbon dioxide
Carbon dioxide lasers
Cooling
Electromagnetism
Equipment and supplies
Fiber optics
Inscriptions
Lasers
Measurement Science and Instrumentation
Microfibers
Micromachining
Microwaves
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
Regular
Resistance thermometers
RF and Optical Engineering
Sensors
Silica
Silicon dioxide
Temperature measurements
Thermal response
Thermoelectricity
Time constant
Time measurement
title Study of Temporal Thermal Response of Microfiber Bragg Grating
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T23%3A29%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20Temporal%20Thermal%20Response%20of%20Microfiber%20Bragg%20Grating&rft.jtitle=Photonic%20Sensors&rft.au=Liao,%20Changrui&rft.date=2021-12-01&rft.volume=11&rft.issue=4&rft.spage=387&rft.epage=391&rft.pages=387-391&rft.issn=1674-9251&rft.eissn=2190-7439&rft_id=info:doi/10.1007/s13320-020-0602-5&rft_dat=%3Cgale_proqu%3EA727772752%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578267697&rft_id=info:pmid/&rft_galeid=A727772752&rfr_iscdi=true