Confirming U(1)Lμ-Lτ as a solution for (g-2)μ with neutrinos

The recent measurement of the muon anomalous magnetic moment by the Fermilab E989 experiment, when combined with the previous result at BNL, has confirmed the tension with the SM prediction at 4.2 σ  CL, strengthening the motivation for new physics in the leptonic sector. Among the different particl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. C, Particles and fields Particles and fields, 2021-10, Vol.81 (10)
Hauptverfasser: Amaral, D. W. P., Cerdeño, D. G., Cheek, A., Foldenauer, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title The European physical journal. C, Particles and fields
container_volume 81
creator Amaral, D. W. P.
Cerdeño, D. G.
Cheek, A.
Foldenauer, P.
description The recent measurement of the muon anomalous magnetic moment by the Fermilab E989 experiment, when combined with the previous result at BNL, has confirmed the tension with the SM prediction at 4.2 σ  CL, strengthening the motivation for new physics in the leptonic sector. Among the different particle physics models that could account for such an excess, a gauged U ( 1 ) L μ - L τ stands out for its simplicity. In this article, we explore how the combination of data from different future probes can help identify the nature of the new physics behind the muon anomalous magnetic moment. In particular, we contrast U ( 1 ) L μ - L τ with an effective U ( 1 ) L μ -type model. We first show that muon fixed target experiments (such as NA64 μ ) will be able to measure the coupling of the hidden photon to the muon sector in the region compatible with ( g - 2 ) μ , and will have some sensitivity to the hidden photon’s mass. We then study how experiments looking for coherent elastic neutrino-nucleus scattering (CE ν NS) at spallation sources will provide crucial additional information on the kinetic mixing of the hidden photon. When combined with NA64 μ results, the exclusion limits (or reconstructed regions) of future CE ν NS detectors will also allow for a better measurement of the mediator mass. Finally, the observation of nuclear recoils from solar neutrinos in dark matter direct detection experiments will provide unique information about the coupling of the hidden photon to the tau sector. The signal expected for U ( 1 ) L μ - L τ is larger than for U ( 1 ) L μ with the same kinetic mixing, and future multi-ton liquid xenon proposals (such as DARWIN) have the potential to confirm the former over the latter. We determine the necessary exposure and energy threshold for a potential 5 σ discovery of a U ( 1 ) L μ - L τ boson, and we conclude that the future DARWIN observatory will be able to carry out this measurement if the experimental threshold is lowered to 1 keV nr .
doi_str_mv 10.1140/epjc/s10052-021-09670-z
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2578267595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578267595</sourcerecordid><originalsourceid>FETCH-LOGICAL-p147z-711ec886a34201bec0200c3702165638e048c662d094ee47b5f0e67dbb0e72dc3</originalsourceid><addsrcrecordid>eNpFkMtKw0AUhgdRsFafwQE37WLsmcncshIJ3iDgxq6HXCYxoWZiJkHo2sfqM9RXMjWiq3M4fJz_50PoksI1pRxWtq2zlacAghFglEAoFZDtEZpRHnAix_vx3875KTrzvgYAxkHP0E3kmqLq3qqmxOsFXcb7HYm_PnHicYK92wx95RpcuA4vSsKW-x3-qPpX3Nih76rG-XN0UiQbby9-5xyt7-9eokcSPz88RbcxaSlXW6IotZnWMgk4A5raDBhAFqixsBQy0Ba4zqRkOYTcWq5SUYCVKk9TsIrlWTBHV9PftnPvg_W9qd3QNWOkYUJpJpUIxUjpifLt2K603T9FwRx0mYMuM-kyY7r50WW2wTfPy17o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578267595</pqid></control><display><type>article</type><title>Confirming U(1)Lμ-Lτ as a solution for (g-2)μ with neutrinos</title><source>SpringerLink Journals (MCLS)</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Springer Nature OA Free Journals</source><creator>Amaral, D. W. P. ; Cerdeño, D. G. ; Cheek, A. ; Foldenauer, P.</creator><creatorcontrib>Amaral, D. W. P. ; Cerdeño, D. G. ; Cheek, A. ; Foldenauer, P.</creatorcontrib><description>The recent measurement of the muon anomalous magnetic moment by the Fermilab E989 experiment, when combined with the previous result at BNL, has confirmed the tension with the SM prediction at 4.2 σ  CL, strengthening the motivation for new physics in the leptonic sector. Among the different particle physics models that could account for such an excess, a gauged U ( 1 ) L μ - L τ stands out for its simplicity. In this article, we explore how the combination of data from different future probes can help identify the nature of the new physics behind the muon anomalous magnetic moment. In particular, we contrast U ( 1 ) L μ - L τ with an effective U ( 1 ) L μ -type model. We first show that muon fixed target experiments (such as NA64 μ ) will be able to measure the coupling of the hidden photon to the muon sector in the region compatible with ( g - 2 ) μ , and will have some sensitivity to the hidden photon’s mass. We then study how experiments looking for coherent elastic neutrino-nucleus scattering (CE ν NS) at spallation sources will provide crucial additional information on the kinetic mixing of the hidden photon. When combined with NA64 μ results, the exclusion limits (or reconstructed regions) of future CE ν NS detectors will also allow for a better measurement of the mediator mass. Finally, the observation of nuclear recoils from solar neutrinos in dark matter direct detection experiments will provide unique information about the coupling of the hidden photon to the tau sector. The signal expected for U ( 1 ) L μ - L τ is larger than for U ( 1 ) L μ with the same kinetic mixing, and future multi-ton liquid xenon proposals (such as DARWIN) have the potential to confirm the former over the latter. We determine the necessary exposure and energy threshold for a potential 5 σ discovery of a U ( 1 ) L μ - L τ boson, and we conclude that the future DARWIN observatory will be able to carry out this measurement if the experimental threshold is lowered to 1 keV nr .</description><identifier>ISSN: 1434-6044</identifier><identifier>EISSN: 1434-6052</identifier><identifier>DOI: 10.1140/epjc/s10052-021-09670-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Astronomy ; Astrophysics and Cosmology ; Coherent scattering ; Coupling ; Dark matter ; Elastic scattering ; Elementary Particles ; Experiments ; Hadrons ; Heavy Ions ; Magnetic moments ; Measurement Science and Instrumentation ; Muons ; Nuclear Energy ; Nuclear Physics ; Particle physics ; Photons ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Regular Article – Theoretical Physics ; Solar neutrinos ; Spallation ; String Theory ; Xenon</subject><ispartof>The European physical journal. C, Particles and fields, 2021-10, Vol.81 (10)</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1414-932X ; 0000-0003-4334-4228 ; 0000-0002-7649-1956 ; 0000-0002-8773-831X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjc/s10052-021-09670-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1140/epjc/s10052-021-09670-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,27901,27902,41096,41464,42165,42533,51294,51551</link.rule.ids></links><search><creatorcontrib>Amaral, D. W. P.</creatorcontrib><creatorcontrib>Cerdeño, D. G.</creatorcontrib><creatorcontrib>Cheek, A.</creatorcontrib><creatorcontrib>Foldenauer, P.</creatorcontrib><title>Confirming U(1)Lμ-Lτ as a solution for (g-2)μ with neutrinos</title><title>The European physical journal. C, Particles and fields</title><addtitle>Eur. Phys. J. C</addtitle><description>The recent measurement of the muon anomalous magnetic moment by the Fermilab E989 experiment, when combined with the previous result at BNL, has confirmed the tension with the SM prediction at 4.2 σ  CL, strengthening the motivation for new physics in the leptonic sector. Among the different particle physics models that could account for such an excess, a gauged U ( 1 ) L μ - L τ stands out for its simplicity. In this article, we explore how the combination of data from different future probes can help identify the nature of the new physics behind the muon anomalous magnetic moment. In particular, we contrast U ( 1 ) L μ - L τ with an effective U ( 1 ) L μ -type model. We first show that muon fixed target experiments (such as NA64 μ ) will be able to measure the coupling of the hidden photon to the muon sector in the region compatible with ( g - 2 ) μ , and will have some sensitivity to the hidden photon’s mass. We then study how experiments looking for coherent elastic neutrino-nucleus scattering (CE ν NS) at spallation sources will provide crucial additional information on the kinetic mixing of the hidden photon. When combined with NA64 μ results, the exclusion limits (or reconstructed regions) of future CE ν NS detectors will also allow for a better measurement of the mediator mass. Finally, the observation of nuclear recoils from solar neutrinos in dark matter direct detection experiments will provide unique information about the coupling of the hidden photon to the tau sector. The signal expected for U ( 1 ) L μ - L τ is larger than for U ( 1 ) L μ with the same kinetic mixing, and future multi-ton liquid xenon proposals (such as DARWIN) have the potential to confirm the former over the latter. We determine the necessary exposure and energy threshold for a potential 5 σ discovery of a U ( 1 ) L μ - L τ boson, and we conclude that the future DARWIN observatory will be able to carry out this measurement if the experimental threshold is lowered to 1 keV nr .</description><subject>Astronomy</subject><subject>Astrophysics and Cosmology</subject><subject>Coherent scattering</subject><subject>Coupling</subject><subject>Dark matter</subject><subject>Elastic scattering</subject><subject>Elementary Particles</subject><subject>Experiments</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Magnetic moments</subject><subject>Measurement Science and Instrumentation</subject><subject>Muons</subject><subject>Nuclear Energy</subject><subject>Nuclear Physics</subject><subject>Particle physics</subject><subject>Photons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Regular Article – Theoretical Physics</subject><subject>Solar neutrinos</subject><subject>Spallation</subject><subject>String Theory</subject><subject>Xenon</subject><issn>1434-6044</issn><issn>1434-6052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNpFkMtKw0AUhgdRsFafwQE37WLsmcncshIJ3iDgxq6HXCYxoWZiJkHo2sfqM9RXMjWiq3M4fJz_50PoksI1pRxWtq2zlacAghFglEAoFZDtEZpRHnAix_vx3875KTrzvgYAxkHP0E3kmqLq3qqmxOsFXcb7HYm_PnHicYK92wx95RpcuA4vSsKW-x3-qPpX3Nih76rG-XN0UiQbby9-5xyt7-9eokcSPz88RbcxaSlXW6IotZnWMgk4A5raDBhAFqixsBQy0Ba4zqRkOYTcWq5SUYCVKk9TsIrlWTBHV9PftnPvg_W9qd3QNWOkYUJpJpUIxUjpifLt2K603T9FwRx0mYMuM-kyY7r50WW2wTfPy17o</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Amaral, D. W. P.</creator><creator>Cerdeño, D. G.</creator><creator>Cheek, A.</creator><creator>Foldenauer, P.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-1414-932X</orcidid><orcidid>https://orcid.org/0000-0003-4334-4228</orcidid><orcidid>https://orcid.org/0000-0002-7649-1956</orcidid><orcidid>https://orcid.org/0000-0002-8773-831X</orcidid></search><sort><creationdate>20211001</creationdate><title>Confirming U(1)Lμ-Lτ as a solution for (g-2)μ with neutrinos</title><author>Amaral, D. W. P. ; Cerdeño, D. G. ; Cheek, A. ; Foldenauer, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p147z-711ec886a34201bec0200c3702165638e048c662d094ee47b5f0e67dbb0e72dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astronomy</topic><topic>Astrophysics and Cosmology</topic><topic>Coherent scattering</topic><topic>Coupling</topic><topic>Dark matter</topic><topic>Elastic scattering</topic><topic>Elementary Particles</topic><topic>Experiments</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Magnetic moments</topic><topic>Measurement Science and Instrumentation</topic><topic>Muons</topic><topic>Nuclear Energy</topic><topic>Nuclear Physics</topic><topic>Particle physics</topic><topic>Photons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Regular Article – Theoretical Physics</topic><topic>Solar neutrinos</topic><topic>Spallation</topic><topic>String Theory</topic><topic>Xenon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amaral, D. W. P.</creatorcontrib><creatorcontrib>Cerdeño, D. G.</creatorcontrib><creatorcontrib>Cheek, A.</creatorcontrib><creatorcontrib>Foldenauer, P.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The European physical journal. C, Particles and fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amaral, D. W. P.</au><au>Cerdeño, D. G.</au><au>Cheek, A.</au><au>Foldenauer, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Confirming U(1)Lμ-Lτ as a solution for (g-2)μ with neutrinos</atitle><jtitle>The European physical journal. C, Particles and fields</jtitle><stitle>Eur. Phys. J. C</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>81</volume><issue>10</issue><issn>1434-6044</issn><eissn>1434-6052</eissn><abstract>The recent measurement of the muon anomalous magnetic moment by the Fermilab E989 experiment, when combined with the previous result at BNL, has confirmed the tension with the SM prediction at 4.2 σ  CL, strengthening the motivation for new physics in the leptonic sector. Among the different particle physics models that could account for such an excess, a gauged U ( 1 ) L μ - L τ stands out for its simplicity. In this article, we explore how the combination of data from different future probes can help identify the nature of the new physics behind the muon anomalous magnetic moment. In particular, we contrast U ( 1 ) L μ - L τ with an effective U ( 1 ) L μ -type model. We first show that muon fixed target experiments (such as NA64 μ ) will be able to measure the coupling of the hidden photon to the muon sector in the region compatible with ( g - 2 ) μ , and will have some sensitivity to the hidden photon’s mass. We then study how experiments looking for coherent elastic neutrino-nucleus scattering (CE ν NS) at spallation sources will provide crucial additional information on the kinetic mixing of the hidden photon. When combined with NA64 μ results, the exclusion limits (or reconstructed regions) of future CE ν NS detectors will also allow for a better measurement of the mediator mass. Finally, the observation of nuclear recoils from solar neutrinos in dark matter direct detection experiments will provide unique information about the coupling of the hidden photon to the tau sector. The signal expected for U ( 1 ) L μ - L τ is larger than for U ( 1 ) L μ with the same kinetic mixing, and future multi-ton liquid xenon proposals (such as DARWIN) have the potential to confirm the former over the latter. We determine the necessary exposure and energy threshold for a potential 5 σ discovery of a U ( 1 ) L μ - L τ boson, and we conclude that the future DARWIN observatory will be able to carry out this measurement if the experimental threshold is lowered to 1 keV nr .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjc/s10052-021-09670-z</doi><orcidid>https://orcid.org/0000-0002-1414-932X</orcidid><orcidid>https://orcid.org/0000-0003-4334-4228</orcidid><orcidid>https://orcid.org/0000-0002-7649-1956</orcidid><orcidid>https://orcid.org/0000-0002-8773-831X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1434-6044
ispartof The European physical journal. C, Particles and fields, 2021-10, Vol.81 (10)
issn 1434-6044
1434-6052
language eng
recordid cdi_proquest_journals_2578267595
source SpringerLink Journals (MCLS); DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Springer Nature OA Free Journals
subjects Astronomy
Astrophysics and Cosmology
Coherent scattering
Coupling
Dark matter
Elastic scattering
Elementary Particles
Experiments
Hadrons
Heavy Ions
Magnetic moments
Measurement Science and Instrumentation
Muons
Nuclear Energy
Nuclear Physics
Particle physics
Photons
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Regular Article – Theoretical Physics
Solar neutrinos
Spallation
String Theory
Xenon
title Confirming U(1)Lμ-Lτ as a solution for (g-2)μ with neutrinos
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A27%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Confirming%20U(1)L%CE%BC-L%CF%84%20as%20a%20solution%20for%20(g-2)%CE%BC%20with%20neutrinos&rft.jtitle=The%20European%20physical%20journal.%20C,%20Particles%20and%20fields&rft.au=Amaral,%20D.%20W.%20P.&rft.date=2021-10-01&rft.volume=81&rft.issue=10&rft.issn=1434-6044&rft.eissn=1434-6052&rft_id=info:doi/10.1140/epjc/s10052-021-09670-z&rft_dat=%3Cproquest_sprin%3E2578267595%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578267595&rft_id=info:pmid/&rfr_iscdi=true