A Novel All-Optical Sensor Design Based on a Tunable Resonant Nanocavity in Photonic Crystal Microstructure Applicable in MEMS Accelerometers
In view of the large scientific and technical interest in the MEMS accelerometer sensor and the limitations of capacitive, resistive piezo, and piezoelectric methods, we focus on the measurement of the seismic mass displacement using a novel design of the all-optical sensor (AOS). The proposed AOS c...
Gespeichert in:
Veröffentlicht in: | Photonic Sensors 2021-12, Vol.11 (4), p.457-471 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 471 |
---|---|
container_issue | 4 |
container_start_page | 457 |
container_title | Photonic Sensors |
container_volume | 11 |
creator | Hosseinzadeh Sani, Mojtaba Saghaei, Hamed Mehranpour, Mohammad Amin Asgariyan Tabrizi, Afsaneh |
description | In view of the large scientific and technical interest in the MEMS accelerometer sensor and the limitations of capacitive, resistive piezo, and piezoelectric methods, we focus on the measurement of the seismic mass displacement using a novel design of the all-optical sensor (AOS). The proposed AOS consists of two waveguides and a ring resonator in a two-dimensional rod-based photonic crystal (PhC) microstructure, and a holder which connects the central rod of a nanocavity to a proof mass. The photonic band structure of the AOS is calculated with the plane-wave expansion approach for TE and TM polarization modes, and the light wave propagation inside the sensor is analyzed by solving Maxwell’s equations using the finite-difference time-domain method. The results of our simulations demonstrate that the fundamental PhC has a free spectral range of about 730 nm covering the optical communication wavelength-bands. Simulations also show that the AOS has the resonant peak of 0.8 at 1.644µm, quality factor of 3288, full width at half maximum of 0.5nm, and figure of merit of 0.97. Furthermore, for the maximum 200nm nanocavity displacements in the
x
- or
y
-direction, the resonant wavelengths shift to 1.618µm and 1.547µm, respectively. We also calculate all characteristics of the nanocavity displacement in positive and negative directions of the
x
-axis and
y
-axis. The small area of 104.35 µm
2
and short propagation time of the AOS make it an interesting sensor for various applications, especially in the vehicle navigation systems and aviation safety tools. |
doi_str_mv | 10.1007/s13320-020-0607-0 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2578264897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A727772759</galeid><sourcerecordid>A727772759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-4534bb99e76cc0e264f468bcc7254240044133b150c9668cd6a7dfe93d057cdb3</originalsourceid><addsrcrecordid>eNp1UcFq3DAQFaWFLkk-oDdBz04lWbaso7tN00I2KU16FrI83qpoJVeSA_sR_efKuJBTGR4D4r03M3oIvaPkmhIiPiRa14xUZEVLREVeoR2jklSC1_I12tFW8Eqyhr5FVynZgTBOJKdC7NCfHt-HZ3C4d656mLM12uFH8ClE_AmSPXr8UScYcfBY46fF68EB_g4peO0zvtc-GP1s8xlbj7_9DDl4a_A-nlMuRgdrYkg5LiYvEXA_z64MWB0K-3BzeMS9MeAghhNkiOkSvZm0S3D1r1-gH59vnvZfqruH26_7_q4ytexyxZuaD4OUIFpjCLCWT7ztBmMEa3i5jXBefmSgDTGybTsztlqME8h6JI0w41BfoPeb7xzD7wVSVr_CEn0ZqVgjumLYSVFY1xvrqB0o66eQozalRjhZEzxMtrz3gglR0MgioJtgvTpFmNQc7UnHs6JErUmpLSlFVpSkFCkatmlS4fojxJdV_i_6C8pElhE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578264897</pqid></control><display><type>article</type><title>A Novel All-Optical Sensor Design Based on a Tunable Resonant Nanocavity in Photonic Crystal Microstructure Applicable in MEMS Accelerometers</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hosseinzadeh Sani, Mojtaba ; Saghaei, Hamed ; Mehranpour, Mohammad Amin ; Asgariyan Tabrizi, Afsaneh</creator><creatorcontrib>Hosseinzadeh Sani, Mojtaba ; Saghaei, Hamed ; Mehranpour, Mohammad Amin ; Asgariyan Tabrizi, Afsaneh</creatorcontrib><description>In view of the large scientific and technical interest in the MEMS accelerometer sensor and the limitations of capacitive, resistive piezo, and piezoelectric methods, we focus on the measurement of the seismic mass displacement using a novel design of the all-optical sensor (AOS). The proposed AOS consists of two waveguides and a ring resonator in a two-dimensional rod-based photonic crystal (PhC) microstructure, and a holder which connects the central rod of a nanocavity to a proof mass. The photonic band structure of the AOS is calculated with the plane-wave expansion approach for TE and TM polarization modes, and the light wave propagation inside the sensor is analyzed by solving Maxwell’s equations using the finite-difference time-domain method. The results of our simulations demonstrate that the fundamental PhC has a free spectral range of about 730 nm covering the optical communication wavelength-bands. Simulations also show that the AOS has the resonant peak of 0.8 at 1.644µm, quality factor of 3288, full width at half maximum of 0.5nm, and figure of merit of 0.97. Furthermore, for the maximum 200nm nanocavity displacements in the
x
- or
y
-direction, the resonant wavelengths shift to 1.618µm and 1.547µm, respectively. We also calculate all characteristics of the nanocavity displacement in positive and negative directions of the
x
-axis and
y
-axis. The small area of 104.35 µm
2
and short propagation time of the AOS make it an interesting sensor for various applications, especially in the vehicle navigation systems and aviation safety tools.</description><identifier>ISSN: 1674-9251</identifier><identifier>EISSN: 2190-7439</identifier><identifier>DOI: 10.1007/s13320-020-0607-0</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Accelerometers ; Air safety ; Crystals ; Displacement ; Electronic equipment and supplies ; Figure of merit ; Finite difference time domain method ; Lasers ; Light ; Mathematical analysis ; Measurement Science and Instrumentation ; Microelectromechanical systems ; Microstructure ; Microwaves ; Navigation systems ; Optical communication ; Optical Devices ; Optical measuring instruments ; Optics ; Photonic crystals ; Photonics ; Physics ; Physics and Astronomy ; Piezoelectricity ; Regular ; RF and Optical Engineering ; Sensors ; Structure ; Wave propagation ; Waveguides</subject><ispartof>Photonic Sensors, 2021-12, Vol.11 (4), p.457-471</ispartof><rights>The Author(s) 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-4534bb99e76cc0e264f468bcc7254240044133b150c9668cd6a7dfe93d057cdb3</citedby><cites>FETCH-LOGICAL-c398t-4534bb99e76cc0e264f468bcc7254240044133b150c9668cd6a7dfe93d057cdb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13320-020-0607-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/s13320-020-0607-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27923,27924,41119,42188,51575</link.rule.ids></links><search><creatorcontrib>Hosseinzadeh Sani, Mojtaba</creatorcontrib><creatorcontrib>Saghaei, Hamed</creatorcontrib><creatorcontrib>Mehranpour, Mohammad Amin</creatorcontrib><creatorcontrib>Asgariyan Tabrizi, Afsaneh</creatorcontrib><title>A Novel All-Optical Sensor Design Based on a Tunable Resonant Nanocavity in Photonic Crystal Microstructure Applicable in MEMS Accelerometers</title><title>Photonic Sensors</title><addtitle>Photonic Sens</addtitle><description>In view of the large scientific and technical interest in the MEMS accelerometer sensor and the limitations of capacitive, resistive piezo, and piezoelectric methods, we focus on the measurement of the seismic mass displacement using a novel design of the all-optical sensor (AOS). The proposed AOS consists of two waveguides and a ring resonator in a two-dimensional rod-based photonic crystal (PhC) microstructure, and a holder which connects the central rod of a nanocavity to a proof mass. The photonic band structure of the AOS is calculated with the plane-wave expansion approach for TE and TM polarization modes, and the light wave propagation inside the sensor is analyzed by solving Maxwell’s equations using the finite-difference time-domain method. The results of our simulations demonstrate that the fundamental PhC has a free spectral range of about 730 nm covering the optical communication wavelength-bands. Simulations also show that the AOS has the resonant peak of 0.8 at 1.644µm, quality factor of 3288, full width at half maximum of 0.5nm, and figure of merit of 0.97. Furthermore, for the maximum 200nm nanocavity displacements in the
x
- or
y
-direction, the resonant wavelengths shift to 1.618µm and 1.547µm, respectively. We also calculate all characteristics of the nanocavity displacement in positive and negative directions of the
x
-axis and
y
-axis. The small area of 104.35 µm
2
and short propagation time of the AOS make it an interesting sensor for various applications, especially in the vehicle navigation systems and aviation safety tools.</description><subject>Accelerometers</subject><subject>Air safety</subject><subject>Crystals</subject><subject>Displacement</subject><subject>Electronic equipment and supplies</subject><subject>Figure of merit</subject><subject>Finite difference time domain method</subject><subject>Lasers</subject><subject>Light</subject><subject>Mathematical analysis</subject><subject>Measurement Science and Instrumentation</subject><subject>Microelectromechanical systems</subject><subject>Microstructure</subject><subject>Microwaves</subject><subject>Navigation systems</subject><subject>Optical communication</subject><subject>Optical Devices</subject><subject>Optical measuring instruments</subject><subject>Optics</subject><subject>Photonic crystals</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Piezoelectricity</subject><subject>Regular</subject><subject>RF and Optical Engineering</subject><subject>Sensors</subject><subject>Structure</subject><subject>Wave propagation</subject><subject>Waveguides</subject><issn>1674-9251</issn><issn>2190-7439</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1UcFq3DAQFaWFLkk-oDdBz04lWbaso7tN00I2KU16FrI83qpoJVeSA_sR_efKuJBTGR4D4r03M3oIvaPkmhIiPiRa14xUZEVLREVeoR2jklSC1_I12tFW8Eqyhr5FVynZgTBOJKdC7NCfHt-HZ3C4d656mLM12uFH8ClE_AmSPXr8UScYcfBY46fF68EB_g4peO0zvtc-GP1s8xlbj7_9DDl4a_A-nlMuRgdrYkg5LiYvEXA_z64MWB0K-3BzeMS9MeAghhNkiOkSvZm0S3D1r1-gH59vnvZfqruH26_7_q4ytexyxZuaD4OUIFpjCLCWT7ztBmMEa3i5jXBefmSgDTGybTsztlqME8h6JI0w41BfoPeb7xzD7wVSVr_CEn0ZqVgjumLYSVFY1xvrqB0o66eQozalRjhZEzxMtrz3gglR0MgioJtgvTpFmNQc7UnHs6JErUmpLSlFVpSkFCkatmlS4fojxJdV_i_6C8pElhE</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Hosseinzadeh Sani, Mojtaba</creator><creator>Saghaei, Hamed</creator><creator>Mehranpour, Mohammad Amin</creator><creator>Asgariyan Tabrizi, Afsaneh</creator><general>Springer Singapore</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20211201</creationdate><title>A Novel All-Optical Sensor Design Based on a Tunable Resonant Nanocavity in Photonic Crystal Microstructure Applicable in MEMS Accelerometers</title><author>Hosseinzadeh Sani, Mojtaba ; Saghaei, Hamed ; Mehranpour, Mohammad Amin ; Asgariyan Tabrizi, Afsaneh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-4534bb99e76cc0e264f468bcc7254240044133b150c9668cd6a7dfe93d057cdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accelerometers</topic><topic>Air safety</topic><topic>Crystals</topic><topic>Displacement</topic><topic>Electronic equipment and supplies</topic><topic>Figure of merit</topic><topic>Finite difference time domain method</topic><topic>Lasers</topic><topic>Light</topic><topic>Mathematical analysis</topic><topic>Measurement Science and Instrumentation</topic><topic>Microelectromechanical systems</topic><topic>Microstructure</topic><topic>Microwaves</topic><topic>Navigation systems</topic><topic>Optical communication</topic><topic>Optical Devices</topic><topic>Optical measuring instruments</topic><topic>Optics</topic><topic>Photonic crystals</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Piezoelectricity</topic><topic>Regular</topic><topic>RF and Optical Engineering</topic><topic>Sensors</topic><topic>Structure</topic><topic>Wave propagation</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hosseinzadeh Sani, Mojtaba</creatorcontrib><creatorcontrib>Saghaei, Hamed</creatorcontrib><creatorcontrib>Mehranpour, Mohammad Amin</creatorcontrib><creatorcontrib>Asgariyan Tabrizi, Afsaneh</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Photonic Sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hosseinzadeh Sani, Mojtaba</au><au>Saghaei, Hamed</au><au>Mehranpour, Mohammad Amin</au><au>Asgariyan Tabrizi, Afsaneh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel All-Optical Sensor Design Based on a Tunable Resonant Nanocavity in Photonic Crystal Microstructure Applicable in MEMS Accelerometers</atitle><jtitle>Photonic Sensors</jtitle><stitle>Photonic Sens</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>11</volume><issue>4</issue><spage>457</spage><epage>471</epage><pages>457-471</pages><issn>1674-9251</issn><eissn>2190-7439</eissn><abstract>In view of the large scientific and technical interest in the MEMS accelerometer sensor and the limitations of capacitive, resistive piezo, and piezoelectric methods, we focus on the measurement of the seismic mass displacement using a novel design of the all-optical sensor (AOS). The proposed AOS consists of two waveguides and a ring resonator in a two-dimensional rod-based photonic crystal (PhC) microstructure, and a holder which connects the central rod of a nanocavity to a proof mass. The photonic band structure of the AOS is calculated with the plane-wave expansion approach for TE and TM polarization modes, and the light wave propagation inside the sensor is analyzed by solving Maxwell’s equations using the finite-difference time-domain method. The results of our simulations demonstrate that the fundamental PhC has a free spectral range of about 730 nm covering the optical communication wavelength-bands. Simulations also show that the AOS has the resonant peak of 0.8 at 1.644µm, quality factor of 3288, full width at half maximum of 0.5nm, and figure of merit of 0.97. Furthermore, for the maximum 200nm nanocavity displacements in the
x
- or
y
-direction, the resonant wavelengths shift to 1.618µm and 1.547µm, respectively. We also calculate all characteristics of the nanocavity displacement in positive and negative directions of the
x
-axis and
y
-axis. The small area of 104.35 µm
2
and short propagation time of the AOS make it an interesting sensor for various applications, especially in the vehicle navigation systems and aviation safety tools.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s13320-020-0607-0</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-9251 |
ispartof | Photonic Sensors, 2021-12, Vol.11 (4), p.457-471 |
issn | 1674-9251 2190-7439 |
language | eng |
recordid | cdi_proquest_journals_2578264897 |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Accelerometers Air safety Crystals Displacement Electronic equipment and supplies Figure of merit Finite difference time domain method Lasers Light Mathematical analysis Measurement Science and Instrumentation Microelectromechanical systems Microstructure Microwaves Navigation systems Optical communication Optical Devices Optical measuring instruments Optics Photonic crystals Photonics Physics Physics and Astronomy Piezoelectricity Regular RF and Optical Engineering Sensors Structure Wave propagation Waveguides |
title | A Novel All-Optical Sensor Design Based on a Tunable Resonant Nanocavity in Photonic Crystal Microstructure Applicable in MEMS Accelerometers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T00%3A39%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20All-Optical%20Sensor%20Design%20Based%20on%20a%20Tunable%20Resonant%20Nanocavity%20in%20Photonic%20Crystal%20Microstructure%20Applicable%20in%20MEMS%20Accelerometers&rft.jtitle=Photonic%20Sensors&rft.au=Hosseinzadeh%20Sani,%20Mojtaba&rft.date=2021-12-01&rft.volume=11&rft.issue=4&rft.spage=457&rft.epage=471&rft.pages=457-471&rft.issn=1674-9251&rft.eissn=2190-7439&rft_id=info:doi/10.1007/s13320-020-0607-0&rft_dat=%3Cgale_proqu%3EA727772759%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578264897&rft_id=info:pmid/&rft_galeid=A727772759&rfr_iscdi=true |