Cantilever self-excited with a higher mode by a piezoelectric actuator

The sensitivity of vibration-type sensors can be improved using a higher resonating frequency of a cantilever resonator. Resonance in such systems can be achieved using a self-excited oscillation, which overcomes the difficulty of using an external excitation in viscous environments. To enhance the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2021-09, Vol.106 (1), p.295-307
Hauptverfasser: Zhou, Keyu, Urasaki, Shinpachiro, Yabuno, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 307
container_issue 1
container_start_page 295
container_title Nonlinear dynamics
container_volume 106
creator Zhou, Keyu
Urasaki, Shinpachiro
Yabuno, Hiroshi
description The sensitivity of vibration-type sensors can be improved using a higher resonating frequency of a cantilever resonator. Resonance in such systems can be achieved using a self-excited oscillation, which overcomes the difficulty of using an external excitation in viscous environments. To enhance the sensitivity of cantilever resonators, several groups have proposed ways to increase the natural frequency of the first mode by changing the cantilever geometry. However, the sensitivity can be further improved by using a self-excited oscillation with a higher mode in addition to the geometry-changing technique. In this study, we present a method to realize this goal. We perform a nonlinear analysis of the governing equation of a cantilever excited by a piezoelectric actuator. For each mode, we also clarify the dependence of the critical feedback gain on the location of a displacement sensor, the output of which is used for feedback control. With the aid of filters, we then devise a way to generate a self-excited oscillation with a higher mode associated with a desired higher natural frequency. Finally, we carry out experiments using a macro-cantilever and report the observation of a self-excited oscillation with the second natural frequency, which is higher than the first natural frequency.
doi_str_mv 10.1007/s11071-021-06832-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2578264186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578264186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-6684e954d585f2570210868c004f21aebc9ee87348fe7b16f30296c474b1613c3</originalsourceid><addsrcrecordid>eNp9UEtLAzEQDqJgrf4BTwueo5PHJtmjFKtCwYtCb2E3nW1Ttt2apGr99UZX8OZhGGbmewwfIZcMrhmAvomMgWYUeC5lBKf8iIxYqQXlqpofkxFUXFKoYH5KzmJcA4DgYEZkOqm3yXf4hqGI2LUUP5xPuCjefVoVdbHyy1U-bfoFFs0hL3YeP3vs0KXgXVG7tK9TH87JSVt3ES9--5i8TO-eJw909nT_OLmdUSdYlahSRmJVykVpypaXOv8LRhkHIFvOamxchWi0kKZF3TDVCuCVclLLPDDhxJhcDbq70L_uMSa77vdhmy1tljNcSWZURvEB5UIfY8DW7oLf1OFgGdjvvOyQl83-9icvyzNJDKSYwdslhj_pf1hfPetsMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578264186</pqid></control><display><type>article</type><title>Cantilever self-excited with a higher mode by a piezoelectric actuator</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhou, Keyu ; Urasaki, Shinpachiro ; Yabuno, Hiroshi</creator><creatorcontrib>Zhou, Keyu ; Urasaki, Shinpachiro ; Yabuno, Hiroshi</creatorcontrib><description>The sensitivity of vibration-type sensors can be improved using a higher resonating frequency of a cantilever resonator. Resonance in such systems can be achieved using a self-excited oscillation, which overcomes the difficulty of using an external excitation in viscous environments. To enhance the sensitivity of cantilever resonators, several groups have proposed ways to increase the natural frequency of the first mode by changing the cantilever geometry. However, the sensitivity can be further improved by using a self-excited oscillation with a higher mode in addition to the geometry-changing technique. In this study, we present a method to realize this goal. We perform a nonlinear analysis of the governing equation of a cantilever excited by a piezoelectric actuator. For each mode, we also clarify the dependence of the critical feedback gain on the location of a displacement sensor, the output of which is used for feedback control. With the aid of filters, we then devise a way to generate a self-excited oscillation with a higher mode associated with a desired higher natural frequency. Finally, we carry out experiments using a macro-cantilever and report the observation of a self-excited oscillation with the second natural frequency, which is higher than the first natural frequency.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-021-06832-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Control ; Dynamical Systems ; Engineering ; Feedback control ; Mechanical Engineering ; Microscopes ; Nonlinear analysis ; Original Paper ; Piezoelectric actuators ; Resonant frequencies ; Resonators ; Sensitivity enhancement ; Vibration</subject><ispartof>Nonlinear dynamics, 2021-09, Vol.106 (1), p.295-307</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-6684e954d585f2570210868c004f21aebc9ee87348fe7b16f30296c474b1613c3</citedby><cites>FETCH-LOGICAL-c319t-6684e954d585f2570210868c004f21aebc9ee87348fe7b16f30296c474b1613c3</cites><orcidid>0000-0001-8733-4553 ; 0000-0002-8200-1597 ; 0000-0001-7883-6447</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-021-06832-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-021-06832-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Zhou, Keyu</creatorcontrib><creatorcontrib>Urasaki, Shinpachiro</creatorcontrib><creatorcontrib>Yabuno, Hiroshi</creatorcontrib><title>Cantilever self-excited with a higher mode by a piezoelectric actuator</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>The sensitivity of vibration-type sensors can be improved using a higher resonating frequency of a cantilever resonator. Resonance in such systems can be achieved using a self-excited oscillation, which overcomes the difficulty of using an external excitation in viscous environments. To enhance the sensitivity of cantilever resonators, several groups have proposed ways to increase the natural frequency of the first mode by changing the cantilever geometry. However, the sensitivity can be further improved by using a self-excited oscillation with a higher mode in addition to the geometry-changing technique. In this study, we present a method to realize this goal. We perform a nonlinear analysis of the governing equation of a cantilever excited by a piezoelectric actuator. For each mode, we also clarify the dependence of the critical feedback gain on the location of a displacement sensor, the output of which is used for feedback control. With the aid of filters, we then devise a way to generate a self-excited oscillation with a higher mode associated with a desired higher natural frequency. Finally, we carry out experiments using a macro-cantilever and report the observation of a self-excited oscillation with the second natural frequency, which is higher than the first natural frequency.</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Feedback control</subject><subject>Mechanical Engineering</subject><subject>Microscopes</subject><subject>Nonlinear analysis</subject><subject>Original Paper</subject><subject>Piezoelectric actuators</subject><subject>Resonant frequencies</subject><subject>Resonators</subject><subject>Sensitivity enhancement</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9UEtLAzEQDqJgrf4BTwueo5PHJtmjFKtCwYtCb2E3nW1Ttt2apGr99UZX8OZhGGbmewwfIZcMrhmAvomMgWYUeC5lBKf8iIxYqQXlqpofkxFUXFKoYH5KzmJcA4DgYEZkOqm3yXf4hqGI2LUUP5xPuCjefVoVdbHyy1U-bfoFFs0hL3YeP3vs0KXgXVG7tK9TH87JSVt3ES9--5i8TO-eJw909nT_OLmdUSdYlahSRmJVykVpypaXOv8LRhkHIFvOamxchWi0kKZF3TDVCuCVclLLPDDhxJhcDbq70L_uMSa77vdhmy1tljNcSWZURvEB5UIfY8DW7oLf1OFgGdjvvOyQl83-9icvyzNJDKSYwdslhj_pf1hfPetsMw</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Zhou, Keyu</creator><creator>Urasaki, Shinpachiro</creator><creator>Yabuno, Hiroshi</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-8733-4553</orcidid><orcidid>https://orcid.org/0000-0002-8200-1597</orcidid><orcidid>https://orcid.org/0000-0001-7883-6447</orcidid></search><sort><creationdate>20210901</creationdate><title>Cantilever self-excited with a higher mode by a piezoelectric actuator</title><author>Zhou, Keyu ; Urasaki, Shinpachiro ; Yabuno, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-6684e954d585f2570210868c004f21aebc9ee87348fe7b16f30296c474b1613c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Feedback control</topic><topic>Mechanical Engineering</topic><topic>Microscopes</topic><topic>Nonlinear analysis</topic><topic>Original Paper</topic><topic>Piezoelectric actuators</topic><topic>Resonant frequencies</topic><topic>Resonators</topic><topic>Sensitivity enhancement</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Keyu</creatorcontrib><creatorcontrib>Urasaki, Shinpachiro</creatorcontrib><creatorcontrib>Yabuno, Hiroshi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Keyu</au><au>Urasaki, Shinpachiro</au><au>Yabuno, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cantilever self-excited with a higher mode by a piezoelectric actuator</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>106</volume><issue>1</issue><spage>295</spage><epage>307</epage><pages>295-307</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>The sensitivity of vibration-type sensors can be improved using a higher resonating frequency of a cantilever resonator. Resonance in such systems can be achieved using a self-excited oscillation, which overcomes the difficulty of using an external excitation in viscous environments. To enhance the sensitivity of cantilever resonators, several groups have proposed ways to increase the natural frequency of the first mode by changing the cantilever geometry. However, the sensitivity can be further improved by using a self-excited oscillation with a higher mode in addition to the geometry-changing technique. In this study, we present a method to realize this goal. We perform a nonlinear analysis of the governing equation of a cantilever excited by a piezoelectric actuator. For each mode, we also clarify the dependence of the critical feedback gain on the location of a displacement sensor, the output of which is used for feedback control. With the aid of filters, we then devise a way to generate a self-excited oscillation with a higher mode associated with a desired higher natural frequency. Finally, we carry out experiments using a macro-cantilever and report the observation of a self-excited oscillation with the second natural frequency, which is higher than the first natural frequency.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-021-06832-2</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8733-4553</orcidid><orcidid>https://orcid.org/0000-0002-8200-1597</orcidid><orcidid>https://orcid.org/0000-0001-7883-6447</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2021-09, Vol.106 (1), p.295-307
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2578264186
source SpringerLink Journals - AutoHoldings
subjects Automotive Engineering
Classical Mechanics
Control
Dynamical Systems
Engineering
Feedback control
Mechanical Engineering
Microscopes
Nonlinear analysis
Original Paper
Piezoelectric actuators
Resonant frequencies
Resonators
Sensitivity enhancement
Vibration
title Cantilever self-excited with a higher mode by a piezoelectric actuator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T06%3A27%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cantilever%20self-excited%20with%20a%20higher%20mode%20by%20a%20piezoelectric%20actuator&rft.jtitle=Nonlinear%20dynamics&rft.au=Zhou,%20Keyu&rft.date=2021-09-01&rft.volume=106&rft.issue=1&rft.spage=295&rft.epage=307&rft.pages=295-307&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-021-06832-2&rft_dat=%3Cproquest_cross%3E2578264186%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578264186&rft_id=info:pmid/&rfr_iscdi=true