Cantilever self-excited with a higher mode by a piezoelectric actuator
The sensitivity of vibration-type sensors can be improved using a higher resonating frequency of a cantilever resonator. Resonance in such systems can be achieved using a self-excited oscillation, which overcomes the difficulty of using an external excitation in viscous environments. To enhance the...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2021-09, Vol.106 (1), p.295-307 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 307 |
---|---|
container_issue | 1 |
container_start_page | 295 |
container_title | Nonlinear dynamics |
container_volume | 106 |
creator | Zhou, Keyu Urasaki, Shinpachiro Yabuno, Hiroshi |
description | The sensitivity of vibration-type sensors can be improved using a higher resonating frequency of a cantilever resonator. Resonance in such systems can be achieved using a self-excited oscillation, which overcomes the difficulty of using an external excitation in viscous environments. To enhance the sensitivity of cantilever resonators, several groups have proposed ways to increase the natural frequency of the first mode by changing the cantilever geometry. However, the sensitivity can be further improved by using a self-excited oscillation with a higher mode in addition to the geometry-changing technique. In this study, we present a method to realize this goal. We perform a nonlinear analysis of the governing equation of a cantilever excited by a piezoelectric actuator. For each mode, we also clarify the dependence of the critical feedback gain on the location of a displacement sensor, the output of which is used for feedback control. With the aid of filters, we then devise a way to generate a self-excited oscillation with a higher mode associated with a desired higher natural frequency. Finally, we carry out experiments using a macro-cantilever and report the observation of a self-excited oscillation with the second natural frequency, which is higher than the first natural frequency. |
doi_str_mv | 10.1007/s11071-021-06832-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2578264186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578264186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-6684e954d585f2570210868c004f21aebc9ee87348fe7b16f30296c474b1613c3</originalsourceid><addsrcrecordid>eNp9UEtLAzEQDqJgrf4BTwueo5PHJtmjFKtCwYtCb2E3nW1Ttt2apGr99UZX8OZhGGbmewwfIZcMrhmAvomMgWYUeC5lBKf8iIxYqQXlqpofkxFUXFKoYH5KzmJcA4DgYEZkOqm3yXf4hqGI2LUUP5xPuCjefVoVdbHyy1U-bfoFFs0hL3YeP3vs0KXgXVG7tK9TH87JSVt3ES9--5i8TO-eJw909nT_OLmdUSdYlahSRmJVykVpypaXOv8LRhkHIFvOamxchWi0kKZF3TDVCuCVclLLPDDhxJhcDbq70L_uMSa77vdhmy1tljNcSWZURvEB5UIfY8DW7oLf1OFgGdjvvOyQl83-9icvyzNJDKSYwdslhj_pf1hfPetsMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578264186</pqid></control><display><type>article</type><title>Cantilever self-excited with a higher mode by a piezoelectric actuator</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhou, Keyu ; Urasaki, Shinpachiro ; Yabuno, Hiroshi</creator><creatorcontrib>Zhou, Keyu ; Urasaki, Shinpachiro ; Yabuno, Hiroshi</creatorcontrib><description>The sensitivity of vibration-type sensors can be improved using a higher resonating frequency of a cantilever resonator. Resonance in such systems can be achieved using a self-excited oscillation, which overcomes the difficulty of using an external excitation in viscous environments. To enhance the sensitivity of cantilever resonators, several groups have proposed ways to increase the natural frequency of the first mode by changing the cantilever geometry. However, the sensitivity can be further improved by using a self-excited oscillation with a higher mode in addition to the geometry-changing technique. In this study, we present a method to realize this goal. We perform a nonlinear analysis of the governing equation of a cantilever excited by a piezoelectric actuator. For each mode, we also clarify the dependence of the critical feedback gain on the location of a displacement sensor, the output of which is used for feedback control. With the aid of filters, we then devise a way to generate a self-excited oscillation with a higher mode associated with a desired higher natural frequency. Finally, we carry out experiments using a macro-cantilever and report the observation of a self-excited oscillation with the second natural frequency, which is higher than the first natural frequency.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-021-06832-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Control ; Dynamical Systems ; Engineering ; Feedback control ; Mechanical Engineering ; Microscopes ; Nonlinear analysis ; Original Paper ; Piezoelectric actuators ; Resonant frequencies ; Resonators ; Sensitivity enhancement ; Vibration</subject><ispartof>Nonlinear dynamics, 2021-09, Vol.106 (1), p.295-307</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-6684e954d585f2570210868c004f21aebc9ee87348fe7b16f30296c474b1613c3</citedby><cites>FETCH-LOGICAL-c319t-6684e954d585f2570210868c004f21aebc9ee87348fe7b16f30296c474b1613c3</cites><orcidid>0000-0001-8733-4553 ; 0000-0002-8200-1597 ; 0000-0001-7883-6447</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-021-06832-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-021-06832-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Zhou, Keyu</creatorcontrib><creatorcontrib>Urasaki, Shinpachiro</creatorcontrib><creatorcontrib>Yabuno, Hiroshi</creatorcontrib><title>Cantilever self-excited with a higher mode by a piezoelectric actuator</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>The sensitivity of vibration-type sensors can be improved using a higher resonating frequency of a cantilever resonator. Resonance in such systems can be achieved using a self-excited oscillation, which overcomes the difficulty of using an external excitation in viscous environments. To enhance the sensitivity of cantilever resonators, several groups have proposed ways to increase the natural frequency of the first mode by changing the cantilever geometry. However, the sensitivity can be further improved by using a self-excited oscillation with a higher mode in addition to the geometry-changing technique. In this study, we present a method to realize this goal. We perform a nonlinear analysis of the governing equation of a cantilever excited by a piezoelectric actuator. For each mode, we also clarify the dependence of the critical feedback gain on the location of a displacement sensor, the output of which is used for feedback control. With the aid of filters, we then devise a way to generate a self-excited oscillation with a higher mode associated with a desired higher natural frequency. Finally, we carry out experiments using a macro-cantilever and report the observation of a self-excited oscillation with the second natural frequency, which is higher than the first natural frequency.</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Feedback control</subject><subject>Mechanical Engineering</subject><subject>Microscopes</subject><subject>Nonlinear analysis</subject><subject>Original Paper</subject><subject>Piezoelectric actuators</subject><subject>Resonant frequencies</subject><subject>Resonators</subject><subject>Sensitivity enhancement</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9UEtLAzEQDqJgrf4BTwueo5PHJtmjFKtCwYtCb2E3nW1Ttt2apGr99UZX8OZhGGbmewwfIZcMrhmAvomMgWYUeC5lBKf8iIxYqQXlqpofkxFUXFKoYH5KzmJcA4DgYEZkOqm3yXf4hqGI2LUUP5xPuCjefVoVdbHyy1U-bfoFFs0hL3YeP3vs0KXgXVG7tK9TH87JSVt3ES9--5i8TO-eJw909nT_OLmdUSdYlahSRmJVykVpypaXOv8LRhkHIFvOamxchWi0kKZF3TDVCuCVclLLPDDhxJhcDbq70L_uMSa77vdhmy1tljNcSWZURvEB5UIfY8DW7oLf1OFgGdjvvOyQl83-9icvyzNJDKSYwdslhj_pf1hfPetsMw</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Zhou, Keyu</creator><creator>Urasaki, Shinpachiro</creator><creator>Yabuno, Hiroshi</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-8733-4553</orcidid><orcidid>https://orcid.org/0000-0002-8200-1597</orcidid><orcidid>https://orcid.org/0000-0001-7883-6447</orcidid></search><sort><creationdate>20210901</creationdate><title>Cantilever self-excited with a higher mode by a piezoelectric actuator</title><author>Zhou, Keyu ; Urasaki, Shinpachiro ; Yabuno, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-6684e954d585f2570210868c004f21aebc9ee87348fe7b16f30296c474b1613c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Feedback control</topic><topic>Mechanical Engineering</topic><topic>Microscopes</topic><topic>Nonlinear analysis</topic><topic>Original Paper</topic><topic>Piezoelectric actuators</topic><topic>Resonant frequencies</topic><topic>Resonators</topic><topic>Sensitivity enhancement</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Keyu</creatorcontrib><creatorcontrib>Urasaki, Shinpachiro</creatorcontrib><creatorcontrib>Yabuno, Hiroshi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Keyu</au><au>Urasaki, Shinpachiro</au><au>Yabuno, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cantilever self-excited with a higher mode by a piezoelectric actuator</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>106</volume><issue>1</issue><spage>295</spage><epage>307</epage><pages>295-307</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>The sensitivity of vibration-type sensors can be improved using a higher resonating frequency of a cantilever resonator. Resonance in such systems can be achieved using a self-excited oscillation, which overcomes the difficulty of using an external excitation in viscous environments. To enhance the sensitivity of cantilever resonators, several groups have proposed ways to increase the natural frequency of the first mode by changing the cantilever geometry. However, the sensitivity can be further improved by using a self-excited oscillation with a higher mode in addition to the geometry-changing technique. In this study, we present a method to realize this goal. We perform a nonlinear analysis of the governing equation of a cantilever excited by a piezoelectric actuator. For each mode, we also clarify the dependence of the critical feedback gain on the location of a displacement sensor, the output of which is used for feedback control. With the aid of filters, we then devise a way to generate a self-excited oscillation with a higher mode associated with a desired higher natural frequency. Finally, we carry out experiments using a macro-cantilever and report the observation of a self-excited oscillation with the second natural frequency, which is higher than the first natural frequency.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-021-06832-2</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8733-4553</orcidid><orcidid>https://orcid.org/0000-0002-8200-1597</orcidid><orcidid>https://orcid.org/0000-0001-7883-6447</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2021-09, Vol.106 (1), p.295-307 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2578264186 |
source | SpringerLink Journals - AutoHoldings |
subjects | Automotive Engineering Classical Mechanics Control Dynamical Systems Engineering Feedback control Mechanical Engineering Microscopes Nonlinear analysis Original Paper Piezoelectric actuators Resonant frequencies Resonators Sensitivity enhancement Vibration |
title | Cantilever self-excited with a higher mode by a piezoelectric actuator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T06%3A27%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cantilever%20self-excited%20with%20a%20higher%20mode%20by%20a%20piezoelectric%20actuator&rft.jtitle=Nonlinear%20dynamics&rft.au=Zhou,%20Keyu&rft.date=2021-09-01&rft.volume=106&rft.issue=1&rft.spage=295&rft.epage=307&rft.pages=295-307&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-021-06832-2&rft_dat=%3Cproquest_cross%3E2578264186%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578264186&rft_id=info:pmid/&rfr_iscdi=true |