Non-convergence of the spherical harmonic expansion of gravitational potential below the Brillouin sphere: The continuous case
For a singleton planet, P, with gravitational potential, V, we show that for each ɛ > 0, there exists a planet P′ with gravitational potential V′, with (P′, V′) “ɛ-close” to (P, V) (in an appropriate C0-sense), for which the spherical harmonic expansion of V′ does not extend more than a distance...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2021-10, Vol.62 (10) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Journal of mathematical physics |
container_volume | 62 |
creator | Ogle, C. Costin, O. Bevis, M. |
description | For a singleton planet, P, with gravitational potential, V, we show that for each ɛ > 0, there exists a planet P′ with gravitational potential V′, with (P′, V′) “ɛ-close” to (P, V) (in an appropriate C0-sense), for which the spherical harmonic expansion of V′ does not extend more than a distance ɛ below the Brillouin sphere of P′. |
doi_str_mv | 10.1063/5.0044930 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2578252122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578252122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-ec8e59a0a07a1a2274e1c664dbd0fd2ca316129da0c0300f23be6cbcc99e6a0c3</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgCtbqwjcYcKUw9SRzd6fFGxTd1PWQyZxpU6bJmGSqbnx2U6foQnCV5PDx5_ATckphQiGNLpMJQBwXEeyREYW8CLM0yffJCICxkMV5fkiOrF0BUJrH8Yh8PmkVCq02aBaoBAa6CdwSA9st0UjB22DJzVorKQJ877iyUqutWRi-kY47__Sm0w6Vk_5WYavfvhNujGxb3Us1ZOFVMPdT_5WTqte9DQS3eEwOGt5aPNmdY_JydzufPoSz5_vH6fUsFBHLXIgix6TgwCHjlDOWxUhFmsZ1VUNTM8EjmlJW1BwERAANiypMRSVEUWDqh9GYnA25ndGvPVpXrnRv_Oq2ZEmWs4RRxrw6H5Qw2lqDTdkZuebmo6RQbustk3JXr7cXg7Vi18MP3mjzC8uubv7Df5O_AHk6i4U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578252122</pqid></control><display><type>article</type><title>Non-convergence of the spherical harmonic expansion of gravitational potential below the Brillouin sphere: The continuous case</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Ogle, C. ; Costin, O. ; Bevis, M.</creator><creatorcontrib>Ogle, C. ; Costin, O. ; Bevis, M.</creatorcontrib><description>For a singleton planet, P, with gravitational potential, V, we show that for each ɛ > 0, there exists a planet P′ with gravitational potential V′, with (P′, V′) “ɛ-close” to (P, V) (in an appropriate C0-sense), for which the spherical harmonic expansion of V′ does not extend more than a distance ɛ below the Brillouin sphere of P′.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0044930</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Physics ; Spherical harmonics</subject><ispartof>Journal of mathematical physics, 2021-10, Vol.62 (10)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-ec8e59a0a07a1a2274e1c664dbd0fd2ca316129da0c0300f23be6cbcc99e6a0c3</citedby><cites>FETCH-LOGICAL-c327t-ec8e59a0a07a1a2274e1c664dbd0fd2ca316129da0c0300f23be6cbcc99e6a0c3</cites><orcidid>0000-0001-6129-2279</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0044930$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Ogle, C.</creatorcontrib><creatorcontrib>Costin, O.</creatorcontrib><creatorcontrib>Bevis, M.</creatorcontrib><title>Non-convergence of the spherical harmonic expansion of gravitational potential below the Brillouin sphere: The continuous case</title><title>Journal of mathematical physics</title><description>For a singleton planet, P, with gravitational potential, V, we show that for each ɛ > 0, there exists a planet P′ with gravitational potential V′, with (P′, V′) “ɛ-close” to (P, V) (in an appropriate C0-sense), for which the spherical harmonic expansion of V′ does not extend more than a distance ɛ below the Brillouin sphere of P′.</description><subject>Physics</subject><subject>Spherical harmonics</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90MtKAzEUBuAgCtbqwjcYcKUw9SRzd6fFGxTd1PWQyZxpU6bJmGSqbnx2U6foQnCV5PDx5_ATckphQiGNLpMJQBwXEeyREYW8CLM0yffJCICxkMV5fkiOrF0BUJrH8Yh8PmkVCq02aBaoBAa6CdwSA9st0UjB22DJzVorKQJ877iyUqutWRi-kY47__Sm0w6Vk_5WYavfvhNujGxb3Us1ZOFVMPdT_5WTqte9DQS3eEwOGt5aPNmdY_JydzufPoSz5_vH6fUsFBHLXIgix6TgwCHjlDOWxUhFmsZ1VUNTM8EjmlJW1BwERAANiypMRSVEUWDqh9GYnA25ndGvPVpXrnRv_Oq2ZEmWs4RRxrw6H5Qw2lqDTdkZuebmo6RQbustk3JXr7cXg7Vi18MP3mjzC8uubv7Df5O_AHk6i4U</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Ogle, C.</creator><creator>Costin, O.</creator><creator>Bevis, M.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6129-2279</orcidid></search><sort><creationdate>20211001</creationdate><title>Non-convergence of the spherical harmonic expansion of gravitational potential below the Brillouin sphere: The continuous case</title><author>Ogle, C. ; Costin, O. ; Bevis, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-ec8e59a0a07a1a2274e1c664dbd0fd2ca316129da0c0300f23be6cbcc99e6a0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Physics</topic><topic>Spherical harmonics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ogle, C.</creatorcontrib><creatorcontrib>Costin, O.</creatorcontrib><creatorcontrib>Bevis, M.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ogle, C.</au><au>Costin, O.</au><au>Bevis, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-convergence of the spherical harmonic expansion of gravitational potential below the Brillouin sphere: The continuous case</atitle><jtitle>Journal of mathematical physics</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>62</volume><issue>10</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>For a singleton planet, P, with gravitational potential, V, we show that for each ɛ > 0, there exists a planet P′ with gravitational potential V′, with (P′, V′) “ɛ-close” to (P, V) (in an appropriate C0-sense), for which the spherical harmonic expansion of V′ does not extend more than a distance ɛ below the Brillouin sphere of P′.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0044930</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6129-2279</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2021-10, Vol.62 (10) |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_proquest_journals_2578252122 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Physics Spherical harmonics |
title | Non-convergence of the spherical harmonic expansion of gravitational potential below the Brillouin sphere: The continuous case |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A08%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-convergence%20of%20the%20spherical%20harmonic%20expansion%20of%20gravitational%20potential%20below%20the%20Brillouin%20sphere:%20The%20continuous%20case&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Ogle,%20C.&rft.date=2021-10-01&rft.volume=62&rft.issue=10&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0044930&rft_dat=%3Cproquest_cross%3E2578252122%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578252122&rft_id=info:pmid/&rfr_iscdi=true |