Fast and Resilient Manipulation Planning for Object Retrieval in Cluttered and Confined Environments

In this article, we present a task and motion planning method for retrieving a target object from clutter using a robotic manipulator. We consider dense and cluttered environments where some objects must be removed in order to retrieve the target without collisions. To ensure a successful execution,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on robotics 2021-10, Vol.37 (5), p.1539-1552
Hauptverfasser: Nam, Changjoo, Cheong, Sang Hun, Lee, Jinhwi, Kim, Dong Hwan, Kim, ChangHwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1552
container_issue 5
container_start_page 1539
container_title IEEE transactions on robotics
container_volume 37
creator Nam, Changjoo
Cheong, Sang Hun
Lee, Jinhwi
Kim, Dong Hwan
Kim, ChangHwan
description In this article, we present a task and motion planning method for retrieving a target object from clutter using a robotic manipulator. We consider dense and cluttered environments where some objects must be removed in order to retrieve the target without collisions. To ensure a successful execution, the interplay between task planning ( what to remove in what order ) and motion planning ( how to remove ) is crucial. Thus, the task and motion planning approach combining a symbolic task planner and a geometric motion planner becomes one of the major paradigms in manipulation planning. However, motion planning in dense clutter often leads to frequent failures, so repetitive task replanning is inevitable. Although symbolic task planners are general and domain-independent, they do not scale; so we need an efficient task planner specialized for dense clutter for fast completion of tasks. We propose a polynomial-time task planner for object manipulation in clutter that can be combined with any motion planner. We aim to optimize the number of pick-and-place actions which often determines the efficiency of object manipulation tasks. We consider common situations that could occur in clutter: 1) all object locations are known, 2) some hidden objects are revealed while relocating some front objects, and 3) the target is hidden until some objects are removed. Our method is shown to reduce the number of pick-and-place actions compared to baseline methods (e.g., at least 28.0% of reduction in a known static environment with 20 objects). We also deploy the proposed method to two physical robots with vision systems to show that our method can solve real-world problems.
doi_str_mv 10.1109/TRO.2020.3047472
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2578235545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9332268</ieee_id><sourcerecordid>2578235545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-88002119c8b39e7240aaa0b6cb47d4cdd9916f04f5d6bc6bc658db16b88f09f43</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvA89Z87iZHWVoVKpVSzyG7m0jKNluTbMH_3tQWYWBm4L03ww-Ae4xmGCP5tFmvZgQRNKOIVawiF2CCJcMFYqW4zDPnpKBIimtwE-MWIcIkohPQLXRMUPsOrk10vTM-wXft3X7sdXKDhx-99t75L2iHAFfN1rQpS1Nw5qB76Dys-zElE0z3l1IP3jqfl7k_uDD4XQ6Mt-DK6j6au3Ofgs_FfFO_FsvVy1v9vCxaInEqhMhvYSxb0VBpKsKQ1ho1ZduwqmNt10mJS4uY5V3ZtMfiomtw2QhhkbSMTsHjKXcfhu_RxKS2wxh8PqkIrwShnDOeVeikasMQYzBW7YPb6fCjMFJHliqzVEeW6swyWx5OFmeM-ZdLSgkpBf0FeCBwnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578235545</pqid></control><display><type>article</type><title>Fast and Resilient Manipulation Planning for Object Retrieval in Cluttered and Confined Environments</title><source>IEEE Electronic Library (IEL)</source><creator>Nam, Changjoo ; Cheong, Sang Hun ; Lee, Jinhwi ; Kim, Dong Hwan ; Kim, ChangHwan</creator><creatorcontrib>Nam, Changjoo ; Cheong, Sang Hun ; Lee, Jinhwi ; Kim, Dong Hwan ; Kim, ChangHwan</creatorcontrib><description>In this article, we present a task and motion planning method for retrieving a target object from clutter using a robotic manipulator. We consider dense and cluttered environments where some objects must be removed in order to retrieve the target without collisions. To ensure a successful execution, the interplay between task planning ( what to remove in what order ) and motion planning ( how to remove ) is crucial. Thus, the task and motion planning approach combining a symbolic task planner and a geometric motion planner becomes one of the major paradigms in manipulation planning. However, motion planning in dense clutter often leads to frequent failures, so repetitive task replanning is inevitable. Although symbolic task planners are general and domain-independent, they do not scale; so we need an efficient task planner specialized for dense clutter for fast completion of tasks. We propose a polynomial-time task planner for object manipulation in clutter that can be combined with any motion planner. We aim to optimize the number of pick-and-place actions which often determines the efficiency of object manipulation tasks. We consider common situations that could occur in clutter: 1) all object locations are known, 2) some hidden objects are revealed while relocating some front objects, and 3) the target is hidden until some objects are removed. Our method is shown to reduce the number of pick-and-place actions compared to baseline methods (e.g., at least 28.0% of reduction in a known static environment with 20 objects). We also deploy the proposed method to two physical robots with vision systems to show that our method can solve real-world problems.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2020.3047472</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Clutter ; Collision avoidance ; Confined spaces ; End effectors ; Manipulation planning ; motion and path planning ; Motion planning ; Object recognition ; Planning ; Polynomials ; Robot arms ; Robot kinematics ; Robots ; Task analysis ; task planning ; Task planning (robotics) ; Vision systems</subject><ispartof>IEEE transactions on robotics, 2021-10, Vol.37 (5), p.1539-1552</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-88002119c8b39e7240aaa0b6cb47d4cdd9916f04f5d6bc6bc658db16b88f09f43</citedby><cites>FETCH-LOGICAL-c291t-88002119c8b39e7240aaa0b6cb47d4cdd9916f04f5d6bc6bc658db16b88f09f43</cites><orcidid>0000-0001-7927-9056 ; 0000-0002-4345-8308 ; 0000-0002-9169-0785</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9332268$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9332268$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nam, Changjoo</creatorcontrib><creatorcontrib>Cheong, Sang Hun</creatorcontrib><creatorcontrib>Lee, Jinhwi</creatorcontrib><creatorcontrib>Kim, Dong Hwan</creatorcontrib><creatorcontrib>Kim, ChangHwan</creatorcontrib><title>Fast and Resilient Manipulation Planning for Object Retrieval in Cluttered and Confined Environments</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>In this article, we present a task and motion planning method for retrieving a target object from clutter using a robotic manipulator. We consider dense and cluttered environments where some objects must be removed in order to retrieve the target without collisions. To ensure a successful execution, the interplay between task planning ( what to remove in what order ) and motion planning ( how to remove ) is crucial. Thus, the task and motion planning approach combining a symbolic task planner and a geometric motion planner becomes one of the major paradigms in manipulation planning. However, motion planning in dense clutter often leads to frequent failures, so repetitive task replanning is inevitable. Although symbolic task planners are general and domain-independent, they do not scale; so we need an efficient task planner specialized for dense clutter for fast completion of tasks. We propose a polynomial-time task planner for object manipulation in clutter that can be combined with any motion planner. We aim to optimize the number of pick-and-place actions which often determines the efficiency of object manipulation tasks. We consider common situations that could occur in clutter: 1) all object locations are known, 2) some hidden objects are revealed while relocating some front objects, and 3) the target is hidden until some objects are removed. Our method is shown to reduce the number of pick-and-place actions compared to baseline methods (e.g., at least 28.0% of reduction in a known static environment with 20 objects). We also deploy the proposed method to two physical robots with vision systems to show that our method can solve real-world problems.</description><subject>Clutter</subject><subject>Collision avoidance</subject><subject>Confined spaces</subject><subject>End effectors</subject><subject>Manipulation planning</subject><subject>motion and path planning</subject><subject>Motion planning</subject><subject>Object recognition</subject><subject>Planning</subject><subject>Polynomials</subject><subject>Robot arms</subject><subject>Robot kinematics</subject><subject>Robots</subject><subject>Task analysis</subject><subject>task planning</subject><subject>Task planning (robotics)</subject><subject>Vision systems</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wUvA89Z87iZHWVoVKpVSzyG7m0jKNluTbMH_3tQWYWBm4L03ww-Ae4xmGCP5tFmvZgQRNKOIVawiF2CCJcMFYqW4zDPnpKBIimtwE-MWIcIkohPQLXRMUPsOrk10vTM-wXft3X7sdXKDhx-99t75L2iHAFfN1rQpS1Nw5qB76Dys-zElE0z3l1IP3jqfl7k_uDD4XQ6Mt-DK6j6au3Ofgs_FfFO_FsvVy1v9vCxaInEqhMhvYSxb0VBpKsKQ1ho1ZduwqmNt10mJS4uY5V3ZtMfiomtw2QhhkbSMTsHjKXcfhu_RxKS2wxh8PqkIrwShnDOeVeikasMQYzBW7YPb6fCjMFJHliqzVEeW6swyWx5OFmeM-ZdLSgkpBf0FeCBwnQ</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Nam, Changjoo</creator><creator>Cheong, Sang Hun</creator><creator>Lee, Jinhwi</creator><creator>Kim, Dong Hwan</creator><creator>Kim, ChangHwan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7927-9056</orcidid><orcidid>https://orcid.org/0000-0002-4345-8308</orcidid><orcidid>https://orcid.org/0000-0002-9169-0785</orcidid></search><sort><creationdate>202110</creationdate><title>Fast and Resilient Manipulation Planning for Object Retrieval in Cluttered and Confined Environments</title><author>Nam, Changjoo ; Cheong, Sang Hun ; Lee, Jinhwi ; Kim, Dong Hwan ; Kim, ChangHwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-88002119c8b39e7240aaa0b6cb47d4cdd9916f04f5d6bc6bc658db16b88f09f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Clutter</topic><topic>Collision avoidance</topic><topic>Confined spaces</topic><topic>End effectors</topic><topic>Manipulation planning</topic><topic>motion and path planning</topic><topic>Motion planning</topic><topic>Object recognition</topic><topic>Planning</topic><topic>Polynomials</topic><topic>Robot arms</topic><topic>Robot kinematics</topic><topic>Robots</topic><topic>Task analysis</topic><topic>task planning</topic><topic>Task planning (robotics)</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nam, Changjoo</creatorcontrib><creatorcontrib>Cheong, Sang Hun</creatorcontrib><creatorcontrib>Lee, Jinhwi</creatorcontrib><creatorcontrib>Kim, Dong Hwan</creatorcontrib><creatorcontrib>Kim, ChangHwan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nam, Changjoo</au><au>Cheong, Sang Hun</au><au>Lee, Jinhwi</au><au>Kim, Dong Hwan</au><au>Kim, ChangHwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast and Resilient Manipulation Planning for Object Retrieval in Cluttered and Confined Environments</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2021-10</date><risdate>2021</risdate><volume>37</volume><issue>5</issue><spage>1539</spage><epage>1552</epage><pages>1539-1552</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>In this article, we present a task and motion planning method for retrieving a target object from clutter using a robotic manipulator. We consider dense and cluttered environments where some objects must be removed in order to retrieve the target without collisions. To ensure a successful execution, the interplay between task planning ( what to remove in what order ) and motion planning ( how to remove ) is crucial. Thus, the task and motion planning approach combining a symbolic task planner and a geometric motion planner becomes one of the major paradigms in manipulation planning. However, motion planning in dense clutter often leads to frequent failures, so repetitive task replanning is inevitable. Although symbolic task planners are general and domain-independent, they do not scale; so we need an efficient task planner specialized for dense clutter for fast completion of tasks. We propose a polynomial-time task planner for object manipulation in clutter that can be combined with any motion planner. We aim to optimize the number of pick-and-place actions which often determines the efficiency of object manipulation tasks. We consider common situations that could occur in clutter: 1) all object locations are known, 2) some hidden objects are revealed while relocating some front objects, and 3) the target is hidden until some objects are removed. Our method is shown to reduce the number of pick-and-place actions compared to baseline methods (e.g., at least 28.0% of reduction in a known static environment with 20 objects). We also deploy the proposed method to two physical robots with vision systems to show that our method can solve real-world problems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TRO.2020.3047472</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7927-9056</orcidid><orcidid>https://orcid.org/0000-0002-4345-8308</orcidid><orcidid>https://orcid.org/0000-0002-9169-0785</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1552-3098
ispartof IEEE transactions on robotics, 2021-10, Vol.37 (5), p.1539-1552
issn 1552-3098
1941-0468
language eng
recordid cdi_proquest_journals_2578235545
source IEEE Electronic Library (IEL)
subjects Clutter
Collision avoidance
Confined spaces
End effectors
Manipulation planning
motion and path planning
Motion planning
Object recognition
Planning
Polynomials
Robot arms
Robot kinematics
Robots
Task analysis
task planning
Task planning (robotics)
Vision systems
title Fast and Resilient Manipulation Planning for Object Retrieval in Cluttered and Confined Environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A23%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20and%20Resilient%20Manipulation%20Planning%20for%20Object%20Retrieval%20in%20Cluttered%20and%20Confined%20Environments&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Nam,%20Changjoo&rft.date=2021-10&rft.volume=37&rft.issue=5&rft.spage=1539&rft.epage=1552&rft.pages=1539-1552&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2020.3047472&rft_dat=%3Cproquest_RIE%3E2578235545%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578235545&rft_id=info:pmid/&rft_ieee_id=9332268&rfr_iscdi=true