The effect of non-visible surface contamination on the quality of an ultrasonic weld
Final product strength is dependent on material properties after processing, which can include secondary operations, such as ultrasonic welding. In this paper, it is shown that non-visible surface contamination can have a profound negative impact on the quality of an ultrasonic weld. Acrylonitrile–b...
Gespeichert in:
Veröffentlicht in: | Welding in the world 2021-11, Vol.65 (11), p.2185-2192 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2192 |
---|---|
container_issue | 11 |
container_start_page | 2185 |
container_title | Welding in the world |
container_volume | 65 |
creator | Ellis, Jeff L. Marcus, Miranda Nitsch, Matt |
description | Final product strength is dependent on material properties after processing, which can include secondary operations, such as ultrasonic welding. In this paper, it is shown that non-visible surface contamination can have a profound negative impact on the quality of an ultrasonic weld. Acrylonitrile–butadiene–styrene (ABS) was contaminated with commonly used chemicals in the polymer processing industry. These included mold releases, cutting fluid, and lotion. The contamination was identified using Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR). The contaminated ABS was ultrasonically welded, then analyzed by pressure decay, tensile strength, cross-sectional microscopy, and scanning electron microcopy with energy-dispersive X-ray spectroscopy (SEM/EDS). Of the contaminates tested, the mold releases (FDA silicone and zinc stearate) had the largest negative effect on the weld, which was a 45% decrease in maximum load. Conversely, cutting fluid had the least effect; statistically, it displayed no difference in strength when compared to the non-contaminated samples. |
doi_str_mv | 10.1007/s40194-021-01170-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2578176787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578176787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-7ca616cfc2febe7a3a96b23521aab70a2ce597fdb971ee3c0f8141a49b9f54973</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SS3c3HUYpfUPBSzyGbJrplm7RJVum_d-sK3oQZ5vI-78CD0DWFWwog7nINVNUEGCVAqQAiT9CMSiEJ51ydohlAXRHGpDxHFzlvAECNO0Or1YfDzntnC44ehxjIZ5e7tnc4D8kb67CNoZhtF0zpYsDjlBHZD6bvyuHImICHviSTY-gs_nL9-hKdedNnd_V75-jt8WG1eCbL16eXxf2SWCagEGENp9x6y7xrnTCVUbxlVcOoMa0Aw6xrlPDrVgnqXGXBS1pTU6tW-aZWopqjm6l3l-J-cLnoTRxSGF9q1ghJBRfymGJTyqaYc3Je71K3NemgKeijPT3Z06M9_WNPyxGqJiiP4fDu0l_1P9Q3pOtzEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578176787</pqid></control><display><type>article</type><title>The effect of non-visible surface contamination on the quality of an ultrasonic weld</title><source>SpringerNature Journals</source><creator>Ellis, Jeff L. ; Marcus, Miranda ; Nitsch, Matt</creator><creatorcontrib>Ellis, Jeff L. ; Marcus, Miranda ; Nitsch, Matt</creatorcontrib><description>Final product strength is dependent on material properties after processing, which can include secondary operations, such as ultrasonic welding. In this paper, it is shown that non-visible surface contamination can have a profound negative impact on the quality of an ultrasonic weld. Acrylonitrile–butadiene–styrene (ABS) was contaminated with commonly used chemicals in the polymer processing industry. These included mold releases, cutting fluid, and lotion. The contamination was identified using Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR). The contaminated ABS was ultrasonically welded, then analyzed by pressure decay, tensile strength, cross-sectional microscopy, and scanning electron microcopy with energy-dispersive X-ray spectroscopy (SEM/EDS). Of the contaminates tested, the mold releases (FDA silicone and zinc stearate) had the largest negative effect on the weld, which was a 45% decrease in maximum load. Conversely, cutting fluid had the least effect; statistically, it displayed no difference in strength when compared to the non-contaminated samples.</description><identifier>ISSN: 0043-2288</identifier><identifier>EISSN: 1878-6669</identifier><identifier>DOI: 10.1007/s40194-021-01170-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Butadiene ; Chemistry and Materials Science ; Contamination ; Cutting fluids ; Fourier transforms ; Infrared spectroscopy ; Material properties ; Materials Science ; Metallic Materials ; Molds ; Processing industry ; Research Paper ; Solid Mechanics ; Spectrum analysis ; Statistical methods ; Tensile strength ; Theoretical and Applied Mechanics ; Ultrasonic welding ; Zinc stearate</subject><ispartof>Welding in the world, 2021-11, Vol.65 (11), p.2185-2192</ispartof><rights>International Institute of Welding 2021</rights><rights>International Institute of Welding 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-7ca616cfc2febe7a3a96b23521aab70a2ce597fdb971ee3c0f8141a49b9f54973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40194-021-01170-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40194-021-01170-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ellis, Jeff L.</creatorcontrib><creatorcontrib>Marcus, Miranda</creatorcontrib><creatorcontrib>Nitsch, Matt</creatorcontrib><title>The effect of non-visible surface contamination on the quality of an ultrasonic weld</title><title>Welding in the world</title><addtitle>Weld World</addtitle><description>Final product strength is dependent on material properties after processing, which can include secondary operations, such as ultrasonic welding. In this paper, it is shown that non-visible surface contamination can have a profound negative impact on the quality of an ultrasonic weld. Acrylonitrile–butadiene–styrene (ABS) was contaminated with commonly used chemicals in the polymer processing industry. These included mold releases, cutting fluid, and lotion. The contamination was identified using Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR). The contaminated ABS was ultrasonically welded, then analyzed by pressure decay, tensile strength, cross-sectional microscopy, and scanning electron microcopy with energy-dispersive X-ray spectroscopy (SEM/EDS). Of the contaminates tested, the mold releases (FDA silicone and zinc stearate) had the largest negative effect on the weld, which was a 45% decrease in maximum load. Conversely, cutting fluid had the least effect; statistically, it displayed no difference in strength when compared to the non-contaminated samples.</description><subject>Butadiene</subject><subject>Chemistry and Materials Science</subject><subject>Contamination</subject><subject>Cutting fluids</subject><subject>Fourier transforms</subject><subject>Infrared spectroscopy</subject><subject>Material properties</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Molds</subject><subject>Processing industry</subject><subject>Research Paper</subject><subject>Solid Mechanics</subject><subject>Spectrum analysis</subject><subject>Statistical methods</subject><subject>Tensile strength</subject><subject>Theoretical and Applied Mechanics</subject><subject>Ultrasonic welding</subject><subject>Zinc stearate</subject><issn>0043-2288</issn><issn>1878-6669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SS3c3HUYpfUPBSzyGbJrplm7RJVum_d-sK3oQZ5vI-78CD0DWFWwog7nINVNUEGCVAqQAiT9CMSiEJ51ydohlAXRHGpDxHFzlvAECNO0Or1YfDzntnC44ehxjIZ5e7tnc4D8kb67CNoZhtF0zpYsDjlBHZD6bvyuHImICHviSTY-gs_nL9-hKdedNnd_V75-jt8WG1eCbL16eXxf2SWCagEGENp9x6y7xrnTCVUbxlVcOoMa0Aw6xrlPDrVgnqXGXBS1pTU6tW-aZWopqjm6l3l-J-cLnoTRxSGF9q1ghJBRfymGJTyqaYc3Je71K3NemgKeijPT3Z06M9_WNPyxGqJiiP4fDu0l_1P9Q3pOtzEQ</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Ellis, Jeff L.</creator><creator>Marcus, Miranda</creator><creator>Nitsch, Matt</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211101</creationdate><title>The effect of non-visible surface contamination on the quality of an ultrasonic weld</title><author>Ellis, Jeff L. ; Marcus, Miranda ; Nitsch, Matt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-7ca616cfc2febe7a3a96b23521aab70a2ce597fdb971ee3c0f8141a49b9f54973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Butadiene</topic><topic>Chemistry and Materials Science</topic><topic>Contamination</topic><topic>Cutting fluids</topic><topic>Fourier transforms</topic><topic>Infrared spectroscopy</topic><topic>Material properties</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Molds</topic><topic>Processing industry</topic><topic>Research Paper</topic><topic>Solid Mechanics</topic><topic>Spectrum analysis</topic><topic>Statistical methods</topic><topic>Tensile strength</topic><topic>Theoretical and Applied Mechanics</topic><topic>Ultrasonic welding</topic><topic>Zinc stearate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ellis, Jeff L.</creatorcontrib><creatorcontrib>Marcus, Miranda</creatorcontrib><creatorcontrib>Nitsch, Matt</creatorcontrib><collection>CrossRef</collection><jtitle>Welding in the world</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ellis, Jeff L.</au><au>Marcus, Miranda</au><au>Nitsch, Matt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of non-visible surface contamination on the quality of an ultrasonic weld</atitle><jtitle>Welding in the world</jtitle><stitle>Weld World</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>65</volume><issue>11</issue><spage>2185</spage><epage>2192</epage><pages>2185-2192</pages><issn>0043-2288</issn><eissn>1878-6669</eissn><abstract>Final product strength is dependent on material properties after processing, which can include secondary operations, such as ultrasonic welding. In this paper, it is shown that non-visible surface contamination can have a profound negative impact on the quality of an ultrasonic weld. Acrylonitrile–butadiene–styrene (ABS) was contaminated with commonly used chemicals in the polymer processing industry. These included mold releases, cutting fluid, and lotion. The contamination was identified using Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR). The contaminated ABS was ultrasonically welded, then analyzed by pressure decay, tensile strength, cross-sectional microscopy, and scanning electron microcopy with energy-dispersive X-ray spectroscopy (SEM/EDS). Of the contaminates tested, the mold releases (FDA silicone and zinc stearate) had the largest negative effect on the weld, which was a 45% decrease in maximum load. Conversely, cutting fluid had the least effect; statistically, it displayed no difference in strength when compared to the non-contaminated samples.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40194-021-01170-8</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-2288 |
ispartof | Welding in the world, 2021-11, Vol.65 (11), p.2185-2192 |
issn | 0043-2288 1878-6669 |
language | eng |
recordid | cdi_proquest_journals_2578176787 |
source | SpringerNature Journals |
subjects | Butadiene Chemistry and Materials Science Contamination Cutting fluids Fourier transforms Infrared spectroscopy Material properties Materials Science Metallic Materials Molds Processing industry Research Paper Solid Mechanics Spectrum analysis Statistical methods Tensile strength Theoretical and Applied Mechanics Ultrasonic welding Zinc stearate |
title | The effect of non-visible surface contamination on the quality of an ultrasonic weld |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A40%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20non-visible%20surface%20contamination%20on%20the%20quality%20of%20an%20ultrasonic%20weld&rft.jtitle=Welding%20in%20the%20world&rft.au=Ellis,%20Jeff%20L.&rft.date=2021-11-01&rft.volume=65&rft.issue=11&rft.spage=2185&rft.epage=2192&rft.pages=2185-2192&rft.issn=0043-2288&rft.eissn=1878-6669&rft_id=info:doi/10.1007/s40194-021-01170-8&rft_dat=%3Cproquest_cross%3E2578176787%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578176787&rft_id=info:pmid/&rfr_iscdi=true |