The effect of non-visible surface contamination on the quality of an ultrasonic weld

Final product strength is dependent on material properties after processing, which can include secondary operations, such as ultrasonic welding. In this paper, it is shown that non-visible surface contamination can have a profound negative impact on the quality of an ultrasonic weld. Acrylonitrile–b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Welding in the world 2021-11, Vol.65 (11), p.2185-2192
Hauptverfasser: Ellis, Jeff L., Marcus, Miranda, Nitsch, Matt
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2192
container_issue 11
container_start_page 2185
container_title Welding in the world
container_volume 65
creator Ellis, Jeff L.
Marcus, Miranda
Nitsch, Matt
description Final product strength is dependent on material properties after processing, which can include secondary operations, such as ultrasonic welding. In this paper, it is shown that non-visible surface contamination can have a profound negative impact on the quality of an ultrasonic weld. Acrylonitrile–butadiene–styrene (ABS) was contaminated with commonly used chemicals in the polymer processing industry. These included mold releases, cutting fluid, and lotion. The contamination was identified using Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR). The contaminated ABS was ultrasonically welded, then analyzed by pressure decay, tensile strength, cross-sectional microscopy, and scanning electron microcopy with energy-dispersive X-ray spectroscopy (SEM/EDS). Of the contaminates tested, the mold releases (FDA silicone and zinc stearate) had the largest negative effect on the weld, which was a 45% decrease in maximum load. Conversely, cutting fluid had the least effect; statistically, it displayed no difference in strength when compared to the non-contaminated samples.
doi_str_mv 10.1007/s40194-021-01170-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2578176787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578176787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-7ca616cfc2febe7a3a96b23521aab70a2ce597fdb971ee3c0f8141a49b9f54973</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SS3c3HUYpfUPBSzyGbJrplm7RJVum_d-sK3oQZ5vI-78CD0DWFWwog7nINVNUEGCVAqQAiT9CMSiEJ51ydohlAXRHGpDxHFzlvAECNO0Or1YfDzntnC44ehxjIZ5e7tnc4D8kb67CNoZhtF0zpYsDjlBHZD6bvyuHImICHviSTY-gs_nL9-hKdedNnd_V75-jt8WG1eCbL16eXxf2SWCagEGENp9x6y7xrnTCVUbxlVcOoMa0Aw6xrlPDrVgnqXGXBS1pTU6tW-aZWopqjm6l3l-J-cLnoTRxSGF9q1ghJBRfymGJTyqaYc3Je71K3NemgKeijPT3Z06M9_WNPyxGqJiiP4fDu0l_1P9Q3pOtzEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578176787</pqid></control><display><type>article</type><title>The effect of non-visible surface contamination on the quality of an ultrasonic weld</title><source>SpringerNature Journals</source><creator>Ellis, Jeff L. ; Marcus, Miranda ; Nitsch, Matt</creator><creatorcontrib>Ellis, Jeff L. ; Marcus, Miranda ; Nitsch, Matt</creatorcontrib><description>Final product strength is dependent on material properties after processing, which can include secondary operations, such as ultrasonic welding. In this paper, it is shown that non-visible surface contamination can have a profound negative impact on the quality of an ultrasonic weld. Acrylonitrile–butadiene–styrene (ABS) was contaminated with commonly used chemicals in the polymer processing industry. These included mold releases, cutting fluid, and lotion. The contamination was identified using Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR). The contaminated ABS was ultrasonically welded, then analyzed by pressure decay, tensile strength, cross-sectional microscopy, and scanning electron microcopy with energy-dispersive X-ray spectroscopy (SEM/EDS). Of the contaminates tested, the mold releases (FDA silicone and zinc stearate) had the largest negative effect on the weld, which was a 45% decrease in maximum load. Conversely, cutting fluid had the least effect; statistically, it displayed no difference in strength when compared to the non-contaminated samples.</description><identifier>ISSN: 0043-2288</identifier><identifier>EISSN: 1878-6669</identifier><identifier>DOI: 10.1007/s40194-021-01170-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Butadiene ; Chemistry and Materials Science ; Contamination ; Cutting fluids ; Fourier transforms ; Infrared spectroscopy ; Material properties ; Materials Science ; Metallic Materials ; Molds ; Processing industry ; Research Paper ; Solid Mechanics ; Spectrum analysis ; Statistical methods ; Tensile strength ; Theoretical and Applied Mechanics ; Ultrasonic welding ; Zinc stearate</subject><ispartof>Welding in the world, 2021-11, Vol.65 (11), p.2185-2192</ispartof><rights>International Institute of Welding 2021</rights><rights>International Institute of Welding 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-7ca616cfc2febe7a3a96b23521aab70a2ce597fdb971ee3c0f8141a49b9f54973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40194-021-01170-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40194-021-01170-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ellis, Jeff L.</creatorcontrib><creatorcontrib>Marcus, Miranda</creatorcontrib><creatorcontrib>Nitsch, Matt</creatorcontrib><title>The effect of non-visible surface contamination on the quality of an ultrasonic weld</title><title>Welding in the world</title><addtitle>Weld World</addtitle><description>Final product strength is dependent on material properties after processing, which can include secondary operations, such as ultrasonic welding. In this paper, it is shown that non-visible surface contamination can have a profound negative impact on the quality of an ultrasonic weld. Acrylonitrile–butadiene–styrene (ABS) was contaminated with commonly used chemicals in the polymer processing industry. These included mold releases, cutting fluid, and lotion. The contamination was identified using Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR). The contaminated ABS was ultrasonically welded, then analyzed by pressure decay, tensile strength, cross-sectional microscopy, and scanning electron microcopy with energy-dispersive X-ray spectroscopy (SEM/EDS). Of the contaminates tested, the mold releases (FDA silicone and zinc stearate) had the largest negative effect on the weld, which was a 45% decrease in maximum load. Conversely, cutting fluid had the least effect; statistically, it displayed no difference in strength when compared to the non-contaminated samples.</description><subject>Butadiene</subject><subject>Chemistry and Materials Science</subject><subject>Contamination</subject><subject>Cutting fluids</subject><subject>Fourier transforms</subject><subject>Infrared spectroscopy</subject><subject>Material properties</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Molds</subject><subject>Processing industry</subject><subject>Research Paper</subject><subject>Solid Mechanics</subject><subject>Spectrum analysis</subject><subject>Statistical methods</subject><subject>Tensile strength</subject><subject>Theoretical and Applied Mechanics</subject><subject>Ultrasonic welding</subject><subject>Zinc stearate</subject><issn>0043-2288</issn><issn>1878-6669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SS3c3HUYpfUPBSzyGbJrplm7RJVum_d-sK3oQZ5vI-78CD0DWFWwog7nINVNUEGCVAqQAiT9CMSiEJ51ydohlAXRHGpDxHFzlvAECNO0Or1YfDzntnC44ehxjIZ5e7tnc4D8kb67CNoZhtF0zpYsDjlBHZD6bvyuHImICHviSTY-gs_nL9-hKdedNnd_V75-jt8WG1eCbL16eXxf2SWCagEGENp9x6y7xrnTCVUbxlVcOoMa0Aw6xrlPDrVgnqXGXBS1pTU6tW-aZWopqjm6l3l-J-cLnoTRxSGF9q1ghJBRfymGJTyqaYc3Je71K3NemgKeijPT3Z06M9_WNPyxGqJiiP4fDu0l_1P9Q3pOtzEQ</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Ellis, Jeff L.</creator><creator>Marcus, Miranda</creator><creator>Nitsch, Matt</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211101</creationdate><title>The effect of non-visible surface contamination on the quality of an ultrasonic weld</title><author>Ellis, Jeff L. ; Marcus, Miranda ; Nitsch, Matt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-7ca616cfc2febe7a3a96b23521aab70a2ce597fdb971ee3c0f8141a49b9f54973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Butadiene</topic><topic>Chemistry and Materials Science</topic><topic>Contamination</topic><topic>Cutting fluids</topic><topic>Fourier transforms</topic><topic>Infrared spectroscopy</topic><topic>Material properties</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Molds</topic><topic>Processing industry</topic><topic>Research Paper</topic><topic>Solid Mechanics</topic><topic>Spectrum analysis</topic><topic>Statistical methods</topic><topic>Tensile strength</topic><topic>Theoretical and Applied Mechanics</topic><topic>Ultrasonic welding</topic><topic>Zinc stearate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ellis, Jeff L.</creatorcontrib><creatorcontrib>Marcus, Miranda</creatorcontrib><creatorcontrib>Nitsch, Matt</creatorcontrib><collection>CrossRef</collection><jtitle>Welding in the world</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ellis, Jeff L.</au><au>Marcus, Miranda</au><au>Nitsch, Matt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of non-visible surface contamination on the quality of an ultrasonic weld</atitle><jtitle>Welding in the world</jtitle><stitle>Weld World</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>65</volume><issue>11</issue><spage>2185</spage><epage>2192</epage><pages>2185-2192</pages><issn>0043-2288</issn><eissn>1878-6669</eissn><abstract>Final product strength is dependent on material properties after processing, which can include secondary operations, such as ultrasonic welding. In this paper, it is shown that non-visible surface contamination can have a profound negative impact on the quality of an ultrasonic weld. Acrylonitrile–butadiene–styrene (ABS) was contaminated with commonly used chemicals in the polymer processing industry. These included mold releases, cutting fluid, and lotion. The contamination was identified using Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR). The contaminated ABS was ultrasonically welded, then analyzed by pressure decay, tensile strength, cross-sectional microscopy, and scanning electron microcopy with energy-dispersive X-ray spectroscopy (SEM/EDS). Of the contaminates tested, the mold releases (FDA silicone and zinc stearate) had the largest negative effect on the weld, which was a 45% decrease in maximum load. Conversely, cutting fluid had the least effect; statistically, it displayed no difference in strength when compared to the non-contaminated samples.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40194-021-01170-8</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0043-2288
ispartof Welding in the world, 2021-11, Vol.65 (11), p.2185-2192
issn 0043-2288
1878-6669
language eng
recordid cdi_proquest_journals_2578176787
source SpringerNature Journals
subjects Butadiene
Chemistry and Materials Science
Contamination
Cutting fluids
Fourier transforms
Infrared spectroscopy
Material properties
Materials Science
Metallic Materials
Molds
Processing industry
Research Paper
Solid Mechanics
Spectrum analysis
Statistical methods
Tensile strength
Theoretical and Applied Mechanics
Ultrasonic welding
Zinc stearate
title The effect of non-visible surface contamination on the quality of an ultrasonic weld
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A40%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20non-visible%20surface%20contamination%20on%20the%20quality%20of%20an%20ultrasonic%20weld&rft.jtitle=Welding%20in%20the%20world&rft.au=Ellis,%20Jeff%20L.&rft.date=2021-11-01&rft.volume=65&rft.issue=11&rft.spage=2185&rft.epage=2192&rft.pages=2185-2192&rft.issn=0043-2288&rft.eissn=1878-6669&rft_id=info:doi/10.1007/s40194-021-01170-8&rft_dat=%3Cproquest_cross%3E2578176787%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578176787&rft_id=info:pmid/&rfr_iscdi=true