Low‐Voltage Magnetoelectric Coupling in Fe0.5Rh0.5/0.68PbMg1/3Nb2/3O3‐0.32PbTiO3 Thin‐Film Heterostructures

The rapid development of computing applications demands novel low‐energy consumption devices for information processing. Among various candidates, magnetoelectric heterostructures hold promise for meeting the required voltage and power goals. Here, a route to low‐voltage control of magnetism in 30 n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2021-10, Vol.31 (40), p.n/a
Hauptverfasser: Zhao, Wenbo, Kim, Jieun, Huang, Xiaoxi, Zhang, Lei, Pesquera, David, Velarde, Gabriel A. P., Gosavi, Tanay, Lin, Chia‐Ching, Nikonov, Dmitri E., Li, Hai, Young, Ian A., Ramesh, Ramamoorthy, Martin, Lane W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 40
container_start_page
container_title Advanced functional materials
container_volume 31
creator Zhao, Wenbo
Kim, Jieun
Huang, Xiaoxi
Zhang, Lei
Pesquera, David
Velarde, Gabriel A. P.
Gosavi, Tanay
Lin, Chia‐Ching
Nikonov, Dmitri E.
Li, Hai
Young, Ian A.
Ramesh, Ramamoorthy
Martin, Lane W.
description The rapid development of computing applications demands novel low‐energy consumption devices for information processing. Among various candidates, magnetoelectric heterostructures hold promise for meeting the required voltage and power goals. Here, a route to low‐voltage control of magnetism in 30 nm Fe0.5Rh0.5/100 nm 0.68PbMg1/3Nb2/3O3‐0.32PbTiO3 (PMN‐PT) heterostructures is demonstrated wherein the magnetoelectric coupling is achieved via strain‐induced changes in the Fe0.5Rh0.5 mediated by voltages applied to the PMN‐PT. We describe approaches to achieve high‐quality, epitaxial growth of Fe0.5Rh0.5 on the PMN‐PT films and, a methodology to probe and quantify magnetoelectric coupling in small thin‐film devices via studies of the anomalous Hall effect. By comparing the spin‐flop field change induced by temperature and external voltage, the magnetoelectric coupling coefficient is estimated to reach ≈7 × 10−8 s m−1 at 325 K while applying a −0.75 V bias. A route to low‐voltage control of magnetism in 30 nm Fe0.5Rh0.5/100 nm 0.68PbMg1/3Nb2/3O3‐0.32PbTiO3 heterostructures is demonstrated by inserting a MgO layer. Using the anomalous Hall effects, the magnetoelectric coupling coefficient is estimated to reach ∼7.08 × 10–8 s m–1 at 325 K while applying a ‐0.75 V bias.
doi_str_mv 10.1002/adfm.202105068
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2578159243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578159243</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1888-4cb9484e949f9cb3a33ddb09cc653bcf76d72b923b377a1a939afd4431dba4873</originalsourceid><addsrcrecordid>eNo9kEFLw0AQhRdRsFavngOek-zubJLdY6nGCq0tUsVb2E026ZY0iZuE0ps_wd_oLzGl0su8meHxHnwI3RPsEYypL7N851FMCQ5wyC_QiIQkdAFTfnneyec1umnbLcYkioCN0Ne83v9-_3zUZScL7SxkUemu1qVOO2tSZ1r3TWmqwjGVE2vsBW-bYfjYC_lKLQriw6uiPixhyMAe0JVamyU4642phk9syp0z0522ddvZPu16q9tbdJXLstV3_zpG7_HTejpz58vnl-lk7jaEc-6yVAnGmRZM5CJVIAGyTGGRpmEAKs2jMIuoEhQURJEkUoCQecYYkExJxiMYo4dTbmPrr163XbKte1sNlQkNIk4CQRkMLnFy7U2pD0ljzU7aQ0JwcmSaHJkmZ6bJ5DFenC_4A80HbVk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578159243</pqid></control><display><type>article</type><title>Low‐Voltage Magnetoelectric Coupling in Fe0.5Rh0.5/0.68PbMg1/3Nb2/3O3‐0.32PbTiO3 Thin‐Film Heterostructures</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhao, Wenbo ; Kim, Jieun ; Huang, Xiaoxi ; Zhang, Lei ; Pesquera, David ; Velarde, Gabriel A. P. ; Gosavi, Tanay ; Lin, Chia‐Ching ; Nikonov, Dmitri E. ; Li, Hai ; Young, Ian A. ; Ramesh, Ramamoorthy ; Martin, Lane W.</creator><creatorcontrib>Zhao, Wenbo ; Kim, Jieun ; Huang, Xiaoxi ; Zhang, Lei ; Pesquera, David ; Velarde, Gabriel A. P. ; Gosavi, Tanay ; Lin, Chia‐Ching ; Nikonov, Dmitri E. ; Li, Hai ; Young, Ian A. ; Ramesh, Ramamoorthy ; Martin, Lane W.</creatorcontrib><description>The rapid development of computing applications demands novel low‐energy consumption devices for information processing. Among various candidates, magnetoelectric heterostructures hold promise for meeting the required voltage and power goals. Here, a route to low‐voltage control of magnetism in 30 nm Fe0.5Rh0.5/100 nm 0.68PbMg1/3Nb2/3O3‐0.32PbTiO3 (PMN‐PT) heterostructures is demonstrated wherein the magnetoelectric coupling is achieved via strain‐induced changes in the Fe0.5Rh0.5 mediated by voltages applied to the PMN‐PT. We describe approaches to achieve high‐quality, epitaxial growth of Fe0.5Rh0.5 on the PMN‐PT films and, a methodology to probe and quantify magnetoelectric coupling in small thin‐film devices via studies of the anomalous Hall effect. By comparing the spin‐flop field change induced by temperature and external voltage, the magnetoelectric coupling coefficient is estimated to reach ≈7 × 10−8 s m−1 at 325 K while applying a −0.75 V bias. A route to low‐voltage control of magnetism in 30 nm Fe0.5Rh0.5/100 nm 0.68PbMg1/3Nb2/3O3‐0.32PbTiO3 heterostructures is demonstrated by inserting a MgO layer. Using the anomalous Hall effects, the magnetoelectric coupling coefficient is estimated to reach ∼7.08 × 10–8 s m–1 at 325 K while applying a ‐0.75 V bias.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202105068</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>anomalous Hall effect ; Coupling coefficients ; Data processing ; Electric potential ; Energy consumption ; Epitaxial growth ; Hall effect ; Heterostructures ; magnetoelectric coupling ; Materials science ; multiferroic heterostructures ; nonvolatile ; piezo‐strain effect ; Voltage</subject><ispartof>Advanced functional materials, 2021-10, Vol.31 (40), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1889-2513 ; 0000-0002-2885-1566</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202105068$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202105068$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Zhao, Wenbo</creatorcontrib><creatorcontrib>Kim, Jieun</creatorcontrib><creatorcontrib>Huang, Xiaoxi</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Pesquera, David</creatorcontrib><creatorcontrib>Velarde, Gabriel A. P.</creatorcontrib><creatorcontrib>Gosavi, Tanay</creatorcontrib><creatorcontrib>Lin, Chia‐Ching</creatorcontrib><creatorcontrib>Nikonov, Dmitri E.</creatorcontrib><creatorcontrib>Li, Hai</creatorcontrib><creatorcontrib>Young, Ian A.</creatorcontrib><creatorcontrib>Ramesh, Ramamoorthy</creatorcontrib><creatorcontrib>Martin, Lane W.</creatorcontrib><title>Low‐Voltage Magnetoelectric Coupling in Fe0.5Rh0.5/0.68PbMg1/3Nb2/3O3‐0.32PbTiO3 Thin‐Film Heterostructures</title><title>Advanced functional materials</title><description>The rapid development of computing applications demands novel low‐energy consumption devices for information processing. Among various candidates, magnetoelectric heterostructures hold promise for meeting the required voltage and power goals. Here, a route to low‐voltage control of magnetism in 30 nm Fe0.5Rh0.5/100 nm 0.68PbMg1/3Nb2/3O3‐0.32PbTiO3 (PMN‐PT) heterostructures is demonstrated wherein the magnetoelectric coupling is achieved via strain‐induced changes in the Fe0.5Rh0.5 mediated by voltages applied to the PMN‐PT. We describe approaches to achieve high‐quality, epitaxial growth of Fe0.5Rh0.5 on the PMN‐PT films and, a methodology to probe and quantify magnetoelectric coupling in small thin‐film devices via studies of the anomalous Hall effect. By comparing the spin‐flop field change induced by temperature and external voltage, the magnetoelectric coupling coefficient is estimated to reach ≈7 × 10−8 s m−1 at 325 K while applying a −0.75 V bias. A route to low‐voltage control of magnetism in 30 nm Fe0.5Rh0.5/100 nm 0.68PbMg1/3Nb2/3O3‐0.32PbTiO3 heterostructures is demonstrated by inserting a MgO layer. Using the anomalous Hall effects, the magnetoelectric coupling coefficient is estimated to reach ∼7.08 × 10–8 s m–1 at 325 K while applying a ‐0.75 V bias.</description><subject>anomalous Hall effect</subject><subject>Coupling coefficients</subject><subject>Data processing</subject><subject>Electric potential</subject><subject>Energy consumption</subject><subject>Epitaxial growth</subject><subject>Hall effect</subject><subject>Heterostructures</subject><subject>magnetoelectric coupling</subject><subject>Materials science</subject><subject>multiferroic heterostructures</subject><subject>nonvolatile</subject><subject>piezo‐strain effect</subject><subject>Voltage</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLw0AQhRdRsFavngOek-zubJLdY6nGCq0tUsVb2E026ZY0iZuE0ps_wd_oLzGl0su8meHxHnwI3RPsEYypL7N851FMCQ5wyC_QiIQkdAFTfnneyec1umnbLcYkioCN0Ne83v9-_3zUZScL7SxkUemu1qVOO2tSZ1r3TWmqwjGVE2vsBW-bYfjYC_lKLQriw6uiPixhyMAe0JVamyU4642phk9syp0z0522ddvZPu16q9tbdJXLstV3_zpG7_HTejpz58vnl-lk7jaEc-6yVAnGmRZM5CJVIAGyTGGRpmEAKs2jMIuoEhQURJEkUoCQecYYkExJxiMYo4dTbmPrr163XbKte1sNlQkNIk4CQRkMLnFy7U2pD0ljzU7aQ0JwcmSaHJkmZ6bJ5DFenC_4A80HbVk</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Zhao, Wenbo</creator><creator>Kim, Jieun</creator><creator>Huang, Xiaoxi</creator><creator>Zhang, Lei</creator><creator>Pesquera, David</creator><creator>Velarde, Gabriel A. P.</creator><creator>Gosavi, Tanay</creator><creator>Lin, Chia‐Ching</creator><creator>Nikonov, Dmitri E.</creator><creator>Li, Hai</creator><creator>Young, Ian A.</creator><creator>Ramesh, Ramamoorthy</creator><creator>Martin, Lane W.</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1889-2513</orcidid><orcidid>https://orcid.org/0000-0002-2885-1566</orcidid></search><sort><creationdate>20211001</creationdate><title>Low‐Voltage Magnetoelectric Coupling in Fe0.5Rh0.5/0.68PbMg1/3Nb2/3O3‐0.32PbTiO3 Thin‐Film Heterostructures</title><author>Zhao, Wenbo ; Kim, Jieun ; Huang, Xiaoxi ; Zhang, Lei ; Pesquera, David ; Velarde, Gabriel A. P. ; Gosavi, Tanay ; Lin, Chia‐Ching ; Nikonov, Dmitri E. ; Li, Hai ; Young, Ian A. ; Ramesh, Ramamoorthy ; Martin, Lane W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1888-4cb9484e949f9cb3a33ddb09cc653bcf76d72b923b377a1a939afd4431dba4873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>anomalous Hall effect</topic><topic>Coupling coefficients</topic><topic>Data processing</topic><topic>Electric potential</topic><topic>Energy consumption</topic><topic>Epitaxial growth</topic><topic>Hall effect</topic><topic>Heterostructures</topic><topic>magnetoelectric coupling</topic><topic>Materials science</topic><topic>multiferroic heterostructures</topic><topic>nonvolatile</topic><topic>piezo‐strain effect</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Wenbo</creatorcontrib><creatorcontrib>Kim, Jieun</creatorcontrib><creatorcontrib>Huang, Xiaoxi</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Pesquera, David</creatorcontrib><creatorcontrib>Velarde, Gabriel A. P.</creatorcontrib><creatorcontrib>Gosavi, Tanay</creatorcontrib><creatorcontrib>Lin, Chia‐Ching</creatorcontrib><creatorcontrib>Nikonov, Dmitri E.</creatorcontrib><creatorcontrib>Li, Hai</creatorcontrib><creatorcontrib>Young, Ian A.</creatorcontrib><creatorcontrib>Ramesh, Ramamoorthy</creatorcontrib><creatorcontrib>Martin, Lane W.</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Wenbo</au><au>Kim, Jieun</au><au>Huang, Xiaoxi</au><au>Zhang, Lei</au><au>Pesquera, David</au><au>Velarde, Gabriel A. P.</au><au>Gosavi, Tanay</au><au>Lin, Chia‐Ching</au><au>Nikonov, Dmitri E.</au><au>Li, Hai</au><au>Young, Ian A.</au><au>Ramesh, Ramamoorthy</au><au>Martin, Lane W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low‐Voltage Magnetoelectric Coupling in Fe0.5Rh0.5/0.68PbMg1/3Nb2/3O3‐0.32PbTiO3 Thin‐Film Heterostructures</atitle><jtitle>Advanced functional materials</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>31</volume><issue>40</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The rapid development of computing applications demands novel low‐energy consumption devices for information processing. Among various candidates, magnetoelectric heterostructures hold promise for meeting the required voltage and power goals. Here, a route to low‐voltage control of magnetism in 30 nm Fe0.5Rh0.5/100 nm 0.68PbMg1/3Nb2/3O3‐0.32PbTiO3 (PMN‐PT) heterostructures is demonstrated wherein the magnetoelectric coupling is achieved via strain‐induced changes in the Fe0.5Rh0.5 mediated by voltages applied to the PMN‐PT. We describe approaches to achieve high‐quality, epitaxial growth of Fe0.5Rh0.5 on the PMN‐PT films and, a methodology to probe and quantify magnetoelectric coupling in small thin‐film devices via studies of the anomalous Hall effect. By comparing the spin‐flop field change induced by temperature and external voltage, the magnetoelectric coupling coefficient is estimated to reach ≈7 × 10−8 s m−1 at 325 K while applying a −0.75 V bias. A route to low‐voltage control of magnetism in 30 nm Fe0.5Rh0.5/100 nm 0.68PbMg1/3Nb2/3O3‐0.32PbTiO3 heterostructures is demonstrated by inserting a MgO layer. Using the anomalous Hall effects, the magnetoelectric coupling coefficient is estimated to reach ∼7.08 × 10–8 s m–1 at 325 K while applying a ‐0.75 V bias.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202105068</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1889-2513</orcidid><orcidid>https://orcid.org/0000-0002-2885-1566</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2021-10, Vol.31 (40), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2578159243
source Wiley Online Library Journals Frontfile Complete
subjects anomalous Hall effect
Coupling coefficients
Data processing
Electric potential
Energy consumption
Epitaxial growth
Hall effect
Heterostructures
magnetoelectric coupling
Materials science
multiferroic heterostructures
nonvolatile
piezo‐strain effect
Voltage
title Low‐Voltage Magnetoelectric Coupling in Fe0.5Rh0.5/0.68PbMg1/3Nb2/3O3‐0.32PbTiO3 Thin‐Film Heterostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A44%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%E2%80%90Voltage%20Magnetoelectric%20Coupling%20in%20Fe0.5Rh0.5/0.68PbMg1/3Nb2/3O3%E2%80%900.32PbTiO3%20Thin%E2%80%90Film%20Heterostructures&rft.jtitle=Advanced%20functional%20materials&rft.au=Zhao,%20Wenbo&rft.date=2021-10-01&rft.volume=31&rft.issue=40&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202105068&rft_dat=%3Cproquest_wiley%3E2578159243%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578159243&rft_id=info:pmid/&rfr_iscdi=true