Low‐Voltage Magnetoelectric Coupling in Fe0.5Rh0.5/0.68PbMg1/3Nb2/3O3‐0.32PbTiO3 Thin‐Film Heterostructures
The rapid development of computing applications demands novel low‐energy consumption devices for information processing. Among various candidates, magnetoelectric heterostructures hold promise for meeting the required voltage and power goals. Here, a route to low‐voltage control of magnetism in 30 n...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2021-10, Vol.31 (40), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 40 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 31 |
creator | Zhao, Wenbo Kim, Jieun Huang, Xiaoxi Zhang, Lei Pesquera, David Velarde, Gabriel A. P. Gosavi, Tanay Lin, Chia‐Ching Nikonov, Dmitri E. Li, Hai Young, Ian A. Ramesh, Ramamoorthy Martin, Lane W. |
description | The rapid development of computing applications demands novel low‐energy consumption devices for information processing. Among various candidates, magnetoelectric heterostructures hold promise for meeting the required voltage and power goals. Here, a route to low‐voltage control of magnetism in 30 nm Fe0.5Rh0.5/100 nm 0.68PbMg1/3Nb2/3O3‐0.32PbTiO3 (PMN‐PT) heterostructures is demonstrated wherein the magnetoelectric coupling is achieved via strain‐induced changes in the Fe0.5Rh0.5 mediated by voltages applied to the PMN‐PT. We describe approaches to achieve high‐quality, epitaxial growth of Fe0.5Rh0.5 on the PMN‐PT films and, a methodology to probe and quantify magnetoelectric coupling in small thin‐film devices via studies of the anomalous Hall effect. By comparing the spin‐flop field change induced by temperature and external voltage, the magnetoelectric coupling coefficient is estimated to reach ≈7 × 10−8 s m−1 at 325 K while applying a −0.75 V bias.
A route to low‐voltage control of magnetism in 30 nm Fe0.5Rh0.5/100 nm 0.68PbMg1/3Nb2/3O3‐0.32PbTiO3 heterostructures is demonstrated by inserting a MgO layer. Using the anomalous Hall effects, the magnetoelectric coupling coefficient is estimated to reach ∼7.08 × 10–8 s m–1 at 325 K while applying a ‐0.75 V bias. |
doi_str_mv | 10.1002/adfm.202105068 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2578159243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578159243</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1888-4cb9484e949f9cb3a33ddb09cc653bcf76d72b923b377a1a939afd4431dba4873</originalsourceid><addsrcrecordid>eNo9kEFLw0AQhRdRsFavngOek-zubJLdY6nGCq0tUsVb2E026ZY0iZuE0ps_wd_oLzGl0su8meHxHnwI3RPsEYypL7N851FMCQ5wyC_QiIQkdAFTfnneyec1umnbLcYkioCN0Ne83v9-_3zUZScL7SxkUemu1qVOO2tSZ1r3TWmqwjGVE2vsBW-bYfjYC_lKLQriw6uiPixhyMAe0JVamyU4642phk9syp0z0522ddvZPu16q9tbdJXLstV3_zpG7_HTejpz58vnl-lk7jaEc-6yVAnGmRZM5CJVIAGyTGGRpmEAKs2jMIuoEhQURJEkUoCQecYYkExJxiMYo4dTbmPrr163XbKte1sNlQkNIk4CQRkMLnFy7U2pD0ljzU7aQ0JwcmSaHJkmZ6bJ5DFenC_4A80HbVk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578159243</pqid></control><display><type>article</type><title>Low‐Voltage Magnetoelectric Coupling in Fe0.5Rh0.5/0.68PbMg1/3Nb2/3O3‐0.32PbTiO3 Thin‐Film Heterostructures</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhao, Wenbo ; Kim, Jieun ; Huang, Xiaoxi ; Zhang, Lei ; Pesquera, David ; Velarde, Gabriel A. P. ; Gosavi, Tanay ; Lin, Chia‐Ching ; Nikonov, Dmitri E. ; Li, Hai ; Young, Ian A. ; Ramesh, Ramamoorthy ; Martin, Lane W.</creator><creatorcontrib>Zhao, Wenbo ; Kim, Jieun ; Huang, Xiaoxi ; Zhang, Lei ; Pesquera, David ; Velarde, Gabriel A. P. ; Gosavi, Tanay ; Lin, Chia‐Ching ; Nikonov, Dmitri E. ; Li, Hai ; Young, Ian A. ; Ramesh, Ramamoorthy ; Martin, Lane W.</creatorcontrib><description>The rapid development of computing applications demands novel low‐energy consumption devices for information processing. Among various candidates, magnetoelectric heterostructures hold promise for meeting the required voltage and power goals. Here, a route to low‐voltage control of magnetism in 30 nm Fe0.5Rh0.5/100 nm 0.68PbMg1/3Nb2/3O3‐0.32PbTiO3 (PMN‐PT) heterostructures is demonstrated wherein the magnetoelectric coupling is achieved via strain‐induced changes in the Fe0.5Rh0.5 mediated by voltages applied to the PMN‐PT. We describe approaches to achieve high‐quality, epitaxial growth of Fe0.5Rh0.5 on the PMN‐PT films and, a methodology to probe and quantify magnetoelectric coupling in small thin‐film devices via studies of the anomalous Hall effect. By comparing the spin‐flop field change induced by temperature and external voltage, the magnetoelectric coupling coefficient is estimated to reach ≈7 × 10−8 s m−1 at 325 K while applying a −0.75 V bias.
A route to low‐voltage control of magnetism in 30 nm Fe0.5Rh0.5/100 nm 0.68PbMg1/3Nb2/3O3‐0.32PbTiO3 heterostructures is demonstrated by inserting a MgO layer. Using the anomalous Hall effects, the magnetoelectric coupling coefficient is estimated to reach ∼7.08 × 10–8 s m–1 at 325 K while applying a ‐0.75 V bias.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202105068</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>anomalous Hall effect ; Coupling coefficients ; Data processing ; Electric potential ; Energy consumption ; Epitaxial growth ; Hall effect ; Heterostructures ; magnetoelectric coupling ; Materials science ; multiferroic heterostructures ; nonvolatile ; piezo‐strain effect ; Voltage</subject><ispartof>Advanced functional materials, 2021-10, Vol.31 (40), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1889-2513 ; 0000-0002-2885-1566</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202105068$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202105068$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Zhao, Wenbo</creatorcontrib><creatorcontrib>Kim, Jieun</creatorcontrib><creatorcontrib>Huang, Xiaoxi</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Pesquera, David</creatorcontrib><creatorcontrib>Velarde, Gabriel A. P.</creatorcontrib><creatorcontrib>Gosavi, Tanay</creatorcontrib><creatorcontrib>Lin, Chia‐Ching</creatorcontrib><creatorcontrib>Nikonov, Dmitri E.</creatorcontrib><creatorcontrib>Li, Hai</creatorcontrib><creatorcontrib>Young, Ian A.</creatorcontrib><creatorcontrib>Ramesh, Ramamoorthy</creatorcontrib><creatorcontrib>Martin, Lane W.</creatorcontrib><title>Low‐Voltage Magnetoelectric Coupling in Fe0.5Rh0.5/0.68PbMg1/3Nb2/3O3‐0.32PbTiO3 Thin‐Film Heterostructures</title><title>Advanced functional materials</title><description>The rapid development of computing applications demands novel low‐energy consumption devices for information processing. Among various candidates, magnetoelectric heterostructures hold promise for meeting the required voltage and power goals. Here, a route to low‐voltage control of magnetism in 30 nm Fe0.5Rh0.5/100 nm 0.68PbMg1/3Nb2/3O3‐0.32PbTiO3 (PMN‐PT) heterostructures is demonstrated wherein the magnetoelectric coupling is achieved via strain‐induced changes in the Fe0.5Rh0.5 mediated by voltages applied to the PMN‐PT. We describe approaches to achieve high‐quality, epitaxial growth of Fe0.5Rh0.5 on the PMN‐PT films and, a methodology to probe and quantify magnetoelectric coupling in small thin‐film devices via studies of the anomalous Hall effect. By comparing the spin‐flop field change induced by temperature and external voltage, the magnetoelectric coupling coefficient is estimated to reach ≈7 × 10−8 s m−1 at 325 K while applying a −0.75 V bias.
A route to low‐voltage control of magnetism in 30 nm Fe0.5Rh0.5/100 nm 0.68PbMg1/3Nb2/3O3‐0.32PbTiO3 heterostructures is demonstrated by inserting a MgO layer. Using the anomalous Hall effects, the magnetoelectric coupling coefficient is estimated to reach ∼7.08 × 10–8 s m–1 at 325 K while applying a ‐0.75 V bias.</description><subject>anomalous Hall effect</subject><subject>Coupling coefficients</subject><subject>Data processing</subject><subject>Electric potential</subject><subject>Energy consumption</subject><subject>Epitaxial growth</subject><subject>Hall effect</subject><subject>Heterostructures</subject><subject>magnetoelectric coupling</subject><subject>Materials science</subject><subject>multiferroic heterostructures</subject><subject>nonvolatile</subject><subject>piezo‐strain effect</subject><subject>Voltage</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLw0AQhRdRsFavngOek-zubJLdY6nGCq0tUsVb2E026ZY0iZuE0ps_wd_oLzGl0su8meHxHnwI3RPsEYypL7N851FMCQ5wyC_QiIQkdAFTfnneyec1umnbLcYkioCN0Ne83v9-_3zUZScL7SxkUemu1qVOO2tSZ1r3TWmqwjGVE2vsBW-bYfjYC_lKLQriw6uiPixhyMAe0JVamyU4642phk9syp0z0522ddvZPu16q9tbdJXLstV3_zpG7_HTejpz58vnl-lk7jaEc-6yVAnGmRZM5CJVIAGyTGGRpmEAKs2jMIuoEhQURJEkUoCQecYYkExJxiMYo4dTbmPrr163XbKte1sNlQkNIk4CQRkMLnFy7U2pD0ljzU7aQ0JwcmSaHJkmZ6bJ5DFenC_4A80HbVk</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Zhao, Wenbo</creator><creator>Kim, Jieun</creator><creator>Huang, Xiaoxi</creator><creator>Zhang, Lei</creator><creator>Pesquera, David</creator><creator>Velarde, Gabriel A. P.</creator><creator>Gosavi, Tanay</creator><creator>Lin, Chia‐Ching</creator><creator>Nikonov, Dmitri E.</creator><creator>Li, Hai</creator><creator>Young, Ian A.</creator><creator>Ramesh, Ramamoorthy</creator><creator>Martin, Lane W.</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1889-2513</orcidid><orcidid>https://orcid.org/0000-0002-2885-1566</orcidid></search><sort><creationdate>20211001</creationdate><title>Low‐Voltage Magnetoelectric Coupling in Fe0.5Rh0.5/0.68PbMg1/3Nb2/3O3‐0.32PbTiO3 Thin‐Film Heterostructures</title><author>Zhao, Wenbo ; Kim, Jieun ; Huang, Xiaoxi ; Zhang, Lei ; Pesquera, David ; Velarde, Gabriel A. P. ; Gosavi, Tanay ; Lin, Chia‐Ching ; Nikonov, Dmitri E. ; Li, Hai ; Young, Ian A. ; Ramesh, Ramamoorthy ; Martin, Lane W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1888-4cb9484e949f9cb3a33ddb09cc653bcf76d72b923b377a1a939afd4431dba4873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>anomalous Hall effect</topic><topic>Coupling coefficients</topic><topic>Data processing</topic><topic>Electric potential</topic><topic>Energy consumption</topic><topic>Epitaxial growth</topic><topic>Hall effect</topic><topic>Heterostructures</topic><topic>magnetoelectric coupling</topic><topic>Materials science</topic><topic>multiferroic heterostructures</topic><topic>nonvolatile</topic><topic>piezo‐strain effect</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Wenbo</creatorcontrib><creatorcontrib>Kim, Jieun</creatorcontrib><creatorcontrib>Huang, Xiaoxi</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Pesquera, David</creatorcontrib><creatorcontrib>Velarde, Gabriel A. P.</creatorcontrib><creatorcontrib>Gosavi, Tanay</creatorcontrib><creatorcontrib>Lin, Chia‐Ching</creatorcontrib><creatorcontrib>Nikonov, Dmitri E.</creatorcontrib><creatorcontrib>Li, Hai</creatorcontrib><creatorcontrib>Young, Ian A.</creatorcontrib><creatorcontrib>Ramesh, Ramamoorthy</creatorcontrib><creatorcontrib>Martin, Lane W.</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Wenbo</au><au>Kim, Jieun</au><au>Huang, Xiaoxi</au><au>Zhang, Lei</au><au>Pesquera, David</au><au>Velarde, Gabriel A. P.</au><au>Gosavi, Tanay</au><au>Lin, Chia‐Ching</au><au>Nikonov, Dmitri E.</au><au>Li, Hai</au><au>Young, Ian A.</au><au>Ramesh, Ramamoorthy</au><au>Martin, Lane W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low‐Voltage Magnetoelectric Coupling in Fe0.5Rh0.5/0.68PbMg1/3Nb2/3O3‐0.32PbTiO3 Thin‐Film Heterostructures</atitle><jtitle>Advanced functional materials</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>31</volume><issue>40</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The rapid development of computing applications demands novel low‐energy consumption devices for information processing. Among various candidates, magnetoelectric heterostructures hold promise for meeting the required voltage and power goals. Here, a route to low‐voltage control of magnetism in 30 nm Fe0.5Rh0.5/100 nm 0.68PbMg1/3Nb2/3O3‐0.32PbTiO3 (PMN‐PT) heterostructures is demonstrated wherein the magnetoelectric coupling is achieved via strain‐induced changes in the Fe0.5Rh0.5 mediated by voltages applied to the PMN‐PT. We describe approaches to achieve high‐quality, epitaxial growth of Fe0.5Rh0.5 on the PMN‐PT films and, a methodology to probe and quantify magnetoelectric coupling in small thin‐film devices via studies of the anomalous Hall effect. By comparing the spin‐flop field change induced by temperature and external voltage, the magnetoelectric coupling coefficient is estimated to reach ≈7 × 10−8 s m−1 at 325 K while applying a −0.75 V bias.
A route to low‐voltage control of magnetism in 30 nm Fe0.5Rh0.5/100 nm 0.68PbMg1/3Nb2/3O3‐0.32PbTiO3 heterostructures is demonstrated by inserting a MgO layer. Using the anomalous Hall effects, the magnetoelectric coupling coefficient is estimated to reach ∼7.08 × 10–8 s m–1 at 325 K while applying a ‐0.75 V bias.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202105068</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1889-2513</orcidid><orcidid>https://orcid.org/0000-0002-2885-1566</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2021-10, Vol.31 (40), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2578159243 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | anomalous Hall effect Coupling coefficients Data processing Electric potential Energy consumption Epitaxial growth Hall effect Heterostructures magnetoelectric coupling Materials science multiferroic heterostructures nonvolatile piezo‐strain effect Voltage |
title | Low‐Voltage Magnetoelectric Coupling in Fe0.5Rh0.5/0.68PbMg1/3Nb2/3O3‐0.32PbTiO3 Thin‐Film Heterostructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A44%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%E2%80%90Voltage%20Magnetoelectric%20Coupling%20in%20Fe0.5Rh0.5/0.68PbMg1/3Nb2/3O3%E2%80%900.32PbTiO3%20Thin%E2%80%90Film%20Heterostructures&rft.jtitle=Advanced%20functional%20materials&rft.au=Zhao,%20Wenbo&rft.date=2021-10-01&rft.volume=31&rft.issue=40&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202105068&rft_dat=%3Cproquest_wiley%3E2578159243%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578159243&rft_id=info:pmid/&rfr_iscdi=true |