Passivity‐based control laws for an unmanned powered parachute aircraft

In this paper, the development of passivity‐based control (PBC) algorithms to stabilize an unmanned powered parachute aerial vehicle is presented. The equations of motion of the system are presented in both Lagrangian and Hamiltonian formalisms. The proposed controllers are based on the Hamiltonian...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Asian journal of control 2021-09, Vol.23 (5), p.2087-2096
Hauptverfasser: García‐Beltrán, C.D., Miranda‐Araujo, E.M., Guerrero‐Sanchez, M.E., Valencia‐Palomo, G., Hernández‐González, O., Gómez‐Peñate, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2096
container_issue 5
container_start_page 2087
container_title Asian journal of control
container_volume 23
creator García‐Beltrán, C.D.
Miranda‐Araujo, E.M.
Guerrero‐Sanchez, M.E.
Valencia‐Palomo, G.
Hernández‐González, O.
Gómez‐Peñate, S.
description In this paper, the development of passivity‐based control (PBC) algorithms to stabilize an unmanned powered parachute aerial vehicle is presented. The equations of motion of the system are presented in both Lagrangian and Hamiltonian formalisms. The proposed controllers are based on the Hamiltonian function of the system and guarantee the parachute aircraft system stabilization. In the first control law a classic PBC strategy is proposed, and in the second, an interconnection and damping assignment‐passivity‐based control (IDA‐PBC) is chosen because of its inherent robustness against parametric uncertainty and unmodeled dynamics. The control objective is to reach a desired final position despite the initial launch conditions. Numerical simulations with variation in the parachute mass weight and in the presence of wind are carried out to validate our proposed schemes.
doi_str_mv 10.1002/asjc.2540
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2578051297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578051297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2970-b1e46e6a9df0d15252c761933d36fa6643b3cbfcdb00df09c83c5d3c54d5093f3</originalsourceid><addsrcrecordid>eNp1kEtOwzAQhi0EEqWw4AaRWLFI60fsJsuq4lFUCSRgbU38EInSONgJVXccgTNyEhzKlsVoRppv5p_5EbokeEYwpnMItZpRnuEjNCEFy1KBC3Ycay5ImgvKT9FZCDXGgrCcT9D6CUKoPqp-__35VUIwOlGu7b1rkgZ2IbHOJ9AmQ7uFto3Nzu2MHzN4UG9DbxKovPJg-3N0YqEJ5uIvT9Hr7c3L6j7dPN6tV8tNqmixwGlJTCaMgEJbrAmnnKqFiJcyzYQFITJWMlVapUuMI1KonCmuY2Sax1csm6Krw97Ou_fBhF7WbvBtlJSUL3LMSdSJ1PWBUt6F4I2Vna-24PeSYDk6JUen5OhUZOcHdlc1Zv8_KJfPD6vfiR_7BGwY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578051297</pqid></control><display><type>article</type><title>Passivity‐based control laws for an unmanned powered parachute aircraft</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>García‐Beltrán, C.D. ; Miranda‐Araujo, E.M. ; Guerrero‐Sanchez, M.E. ; Valencia‐Palomo, G. ; Hernández‐González, O. ; Gómez‐Peñate, S.</creator><creatorcontrib>García‐Beltrán, C.D. ; Miranda‐Araujo, E.M. ; Guerrero‐Sanchez, M.E. ; Valencia‐Palomo, G. ; Hernández‐González, O. ; Gómez‐Peñate, S.</creatorcontrib><description>In this paper, the development of passivity‐based control (PBC) algorithms to stabilize an unmanned powered parachute aerial vehicle is presented. The equations of motion of the system are presented in both Lagrangian and Hamiltonian formalisms. The proposed controllers are based on the Hamiltonian function of the system and guarantee the parachute aircraft system stabilization. In the first control law a classic PBC strategy is proposed, and in the second, an interconnection and damping assignment‐passivity‐based control (IDA‐PBC) is chosen because of its inherent robustness against parametric uncertainty and unmodeled dynamics. The control objective is to reach a desired final position despite the initial launch conditions. Numerical simulations with variation in the parachute mass weight and in the presence of wind are carried out to validate our proposed schemes.</description><identifier>ISSN: 1561-8625</identifier><identifier>EISSN: 1934-6093</identifier><identifier>DOI: 10.1002/asjc.2540</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Aircraft ; Algorithms ; Control theory ; Damping ; disturbance ; Equations of motion ; Hamiltonian functions ; IDA‐PBC ; parachute aircraft ; Parachutes ; Passivity ; passivity‐based control ; Robustness (mathematics) ; UAV of flexible structure ; Unmanned aerial vehicles ; Unmanned aircraft</subject><ispartof>Asian journal of control, 2021-09, Vol.23 (5), p.2087-2096</ispartof><rights>2021 Chinese Automatic Control Society and John Wiley &amp; Sons Australia, Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2970-b1e46e6a9df0d15252c761933d36fa6643b3cbfcdb00df09c83c5d3c54d5093f3</citedby><cites>FETCH-LOGICAL-c2970-b1e46e6a9df0d15252c761933d36fa6643b3cbfcdb00df09c83c5d3c54d5093f3</cites><orcidid>0000-0001-5256-6266 ; 0000-0002-3382-8213 ; 0000-0002-0297-1439</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fasjc.2540$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fasjc.2540$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>García‐Beltrán, C.D.</creatorcontrib><creatorcontrib>Miranda‐Araujo, E.M.</creatorcontrib><creatorcontrib>Guerrero‐Sanchez, M.E.</creatorcontrib><creatorcontrib>Valencia‐Palomo, G.</creatorcontrib><creatorcontrib>Hernández‐González, O.</creatorcontrib><creatorcontrib>Gómez‐Peñate, S.</creatorcontrib><title>Passivity‐based control laws for an unmanned powered parachute aircraft</title><title>Asian journal of control</title><description>In this paper, the development of passivity‐based control (PBC) algorithms to stabilize an unmanned powered parachute aerial vehicle is presented. The equations of motion of the system are presented in both Lagrangian and Hamiltonian formalisms. The proposed controllers are based on the Hamiltonian function of the system and guarantee the parachute aircraft system stabilization. In the first control law a classic PBC strategy is proposed, and in the second, an interconnection and damping assignment‐passivity‐based control (IDA‐PBC) is chosen because of its inherent robustness against parametric uncertainty and unmodeled dynamics. The control objective is to reach a desired final position despite the initial launch conditions. Numerical simulations with variation in the parachute mass weight and in the presence of wind are carried out to validate our proposed schemes.</description><subject>Aircraft</subject><subject>Algorithms</subject><subject>Control theory</subject><subject>Damping</subject><subject>disturbance</subject><subject>Equations of motion</subject><subject>Hamiltonian functions</subject><subject>IDA‐PBC</subject><subject>parachute aircraft</subject><subject>Parachutes</subject><subject>Passivity</subject><subject>passivity‐based control</subject><subject>Robustness (mathematics)</subject><subject>UAV of flexible structure</subject><subject>Unmanned aerial vehicles</subject><subject>Unmanned aircraft</subject><issn>1561-8625</issn><issn>1934-6093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEtOwzAQhi0EEqWw4AaRWLFI60fsJsuq4lFUCSRgbU38EInSONgJVXccgTNyEhzKlsVoRppv5p_5EbokeEYwpnMItZpRnuEjNCEFy1KBC3Ycay5ImgvKT9FZCDXGgrCcT9D6CUKoPqp-__35VUIwOlGu7b1rkgZ2IbHOJ9AmQ7uFto3Nzu2MHzN4UG9DbxKovPJg-3N0YqEJ5uIvT9Hr7c3L6j7dPN6tV8tNqmixwGlJTCaMgEJbrAmnnKqFiJcyzYQFITJWMlVapUuMI1KonCmuY2Sax1csm6Krw97Ou_fBhF7WbvBtlJSUL3LMSdSJ1PWBUt6F4I2Vna-24PeSYDk6JUen5OhUZOcHdlc1Zv8_KJfPD6vfiR_7BGwY</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>García‐Beltrán, C.D.</creator><creator>Miranda‐Araujo, E.M.</creator><creator>Guerrero‐Sanchez, M.E.</creator><creator>Valencia‐Palomo, G.</creator><creator>Hernández‐González, O.</creator><creator>Gómez‐Peñate, S.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0001-5256-6266</orcidid><orcidid>https://orcid.org/0000-0002-3382-8213</orcidid><orcidid>https://orcid.org/0000-0002-0297-1439</orcidid></search><sort><creationdate>202109</creationdate><title>Passivity‐based control laws for an unmanned powered parachute aircraft</title><author>García‐Beltrán, C.D. ; Miranda‐Araujo, E.M. ; Guerrero‐Sanchez, M.E. ; Valencia‐Palomo, G. ; Hernández‐González, O. ; Gómez‐Peñate, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2970-b1e46e6a9df0d15252c761933d36fa6643b3cbfcdb00df09c83c5d3c54d5093f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aircraft</topic><topic>Algorithms</topic><topic>Control theory</topic><topic>Damping</topic><topic>disturbance</topic><topic>Equations of motion</topic><topic>Hamiltonian functions</topic><topic>IDA‐PBC</topic><topic>parachute aircraft</topic><topic>Parachutes</topic><topic>Passivity</topic><topic>passivity‐based control</topic><topic>Robustness (mathematics)</topic><topic>UAV of flexible structure</topic><topic>Unmanned aerial vehicles</topic><topic>Unmanned aircraft</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>García‐Beltrán, C.D.</creatorcontrib><creatorcontrib>Miranda‐Araujo, E.M.</creatorcontrib><creatorcontrib>Guerrero‐Sanchez, M.E.</creatorcontrib><creatorcontrib>Valencia‐Palomo, G.</creatorcontrib><creatorcontrib>Hernández‐González, O.</creatorcontrib><creatorcontrib>Gómez‐Peñate, S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Asian journal of control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>García‐Beltrán, C.D.</au><au>Miranda‐Araujo, E.M.</au><au>Guerrero‐Sanchez, M.E.</au><au>Valencia‐Palomo, G.</au><au>Hernández‐González, O.</au><au>Gómez‐Peñate, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Passivity‐based control laws for an unmanned powered parachute aircraft</atitle><jtitle>Asian journal of control</jtitle><date>2021-09</date><risdate>2021</risdate><volume>23</volume><issue>5</issue><spage>2087</spage><epage>2096</epage><pages>2087-2096</pages><issn>1561-8625</issn><eissn>1934-6093</eissn><abstract>In this paper, the development of passivity‐based control (PBC) algorithms to stabilize an unmanned powered parachute aerial vehicle is presented. The equations of motion of the system are presented in both Lagrangian and Hamiltonian formalisms. The proposed controllers are based on the Hamiltonian function of the system and guarantee the parachute aircraft system stabilization. In the first control law a classic PBC strategy is proposed, and in the second, an interconnection and damping assignment‐passivity‐based control (IDA‐PBC) is chosen because of its inherent robustness against parametric uncertainty and unmodeled dynamics. The control objective is to reach a desired final position despite the initial launch conditions. Numerical simulations with variation in the parachute mass weight and in the presence of wind are carried out to validate our proposed schemes.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/asjc.2540</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5256-6266</orcidid><orcidid>https://orcid.org/0000-0002-3382-8213</orcidid><orcidid>https://orcid.org/0000-0002-0297-1439</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1561-8625
ispartof Asian journal of control, 2021-09, Vol.23 (5), p.2087-2096
issn 1561-8625
1934-6093
language eng
recordid cdi_proquest_journals_2578051297
source Wiley Online Library Journals Frontfile Complete
subjects Aircraft
Algorithms
Control theory
Damping
disturbance
Equations of motion
Hamiltonian functions
IDA‐PBC
parachute aircraft
Parachutes
Passivity
passivity‐based control
Robustness (mathematics)
UAV of flexible structure
Unmanned aerial vehicles
Unmanned aircraft
title Passivity‐based control laws for an unmanned powered parachute aircraft
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A33%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Passivity%E2%80%90based%20control%20laws%20for%20an%20unmanned%20powered%20parachute%20aircraft&rft.jtitle=Asian%20journal%20of%20control&rft.au=Garc%C3%ADa%E2%80%90Beltr%C3%A1n,%20C.D.&rft.date=2021-09&rft.volume=23&rft.issue=5&rft.spage=2087&rft.epage=2096&rft.pages=2087-2096&rft.issn=1561-8625&rft.eissn=1934-6093&rft_id=info:doi/10.1002/asjc.2540&rft_dat=%3Cproquest_cross%3E2578051297%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578051297&rft_id=info:pmid/&rfr_iscdi=true