Joint Communication and Motion Planning for Cobots
The increasing deployment of robots in co-working scenarios with humans has revealed complex safety and efficiency challenges in the computation robot behavior. Movement among humans is one of the most fundamental -- and yet critical -- problems in this frontier. While several approaches have addres...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-03 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Dadvar, Mehdi Keyvan Majd Oikonomou, Elena Fainekos, Georgios Srivastava, Siddharth |
description | The increasing deployment of robots in co-working scenarios with humans has revealed complex safety and efficiency challenges in the computation robot behavior. Movement among humans is one of the most fundamental -- and yet critical -- problems in this frontier. While several approaches have addressed this problem from a purely navigational point of view, the absence of a unified paradigm for communicating with humans limits their ability to prevent deadlocks and compute feasible solutions. This paper presents a joint communication and motion planning framework that selects from an arbitrary input set of robot's communication signals while computing robot motion plans. It models a human co-worker's imperfect perception of these communications using a noisy sensor model and facilitates the specification of a variety of social/workplace compliance priorities with a flexible cost function. Theoretical results and simulator-based empirical evaluations show that our approach efficiently computes motion plans and communication strategies that reduce conflicts between agents and resolve potential deadlocks. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2577951644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2577951644</sourcerecordid><originalsourceid>FETCH-proquest_journals_25779516443</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw8srPzCtRcM7PzS3Ny0xOLMnMz1NIzEtR8M0HMwNyEvPyMvPSFdLyi4CqkvJLinkYWNMSc4pTeaE0N4Oym2uIs4duQVF-YWlqcUl8Vn5pUR5QKt7I1Nzc0tTQzMTEmDhVANNYM8Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577951644</pqid></control><display><type>article</type><title>Joint Communication and Motion Planning for Cobots</title><source>Free E- Journals</source><creator>Dadvar, Mehdi ; Keyvan Majd ; Oikonomou, Elena ; Fainekos, Georgios ; Srivastava, Siddharth</creator><creatorcontrib>Dadvar, Mehdi ; Keyvan Majd ; Oikonomou, Elena ; Fainekos, Georgios ; Srivastava, Siddharth</creatorcontrib><description>The increasing deployment of robots in co-working scenarios with humans has revealed complex safety and efficiency challenges in the computation robot behavior. Movement among humans is one of the most fundamental -- and yet critical -- problems in this frontier. While several approaches have addressed this problem from a purely navigational point of view, the absence of a unified paradigm for communicating with humans limits their ability to prevent deadlocks and compute feasible solutions. This paper presents a joint communication and motion planning framework that selects from an arbitrary input set of robot's communication signals while computing robot motion plans. It models a human co-worker's imperfect perception of these communications using a noisy sensor model and facilitates the specification of a variety of social/workplace compliance priorities with a flexible cost function. Theoretical results and simulator-based empirical evaluations show that our approach efficiently computes motion plans and communication strategies that reduce conflicts between agents and resolve potential deadlocks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Communication ; Cost function ; Human motion ; Motion planning ; Robot dynamics ; Robots</subject><ispartof>arXiv.org, 2022-03</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Dadvar, Mehdi</creatorcontrib><creatorcontrib>Keyvan Majd</creatorcontrib><creatorcontrib>Oikonomou, Elena</creatorcontrib><creatorcontrib>Fainekos, Georgios</creatorcontrib><creatorcontrib>Srivastava, Siddharth</creatorcontrib><title>Joint Communication and Motion Planning for Cobots</title><title>arXiv.org</title><description>The increasing deployment of robots in co-working scenarios with humans has revealed complex safety and efficiency challenges in the computation robot behavior. Movement among humans is one of the most fundamental -- and yet critical -- problems in this frontier. While several approaches have addressed this problem from a purely navigational point of view, the absence of a unified paradigm for communicating with humans limits their ability to prevent deadlocks and compute feasible solutions. This paper presents a joint communication and motion planning framework that selects from an arbitrary input set of robot's communication signals while computing robot motion plans. It models a human co-worker's imperfect perception of these communications using a noisy sensor model and facilitates the specification of a variety of social/workplace compliance priorities with a flexible cost function. Theoretical results and simulator-based empirical evaluations show that our approach efficiently computes motion plans and communication strategies that reduce conflicts between agents and resolve potential deadlocks.</description><subject>Communication</subject><subject>Cost function</subject><subject>Human motion</subject><subject>Motion planning</subject><subject>Robot dynamics</subject><subject>Robots</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw8srPzCtRcM7PzS3Ny0xOLMnMz1NIzEtR8M0HMwNyEvPyMvPSFdLyi4CqkvJLinkYWNMSc4pTeaE0N4Oym2uIs4duQVF-YWlqcUl8Vn5pUR5QKt7I1Nzc0tTQzMTEmDhVANNYM8Y</recordid><startdate>20220302</startdate><enddate>20220302</enddate><creator>Dadvar, Mehdi</creator><creator>Keyvan Majd</creator><creator>Oikonomou, Elena</creator><creator>Fainekos, Georgios</creator><creator>Srivastava, Siddharth</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220302</creationdate><title>Joint Communication and Motion Planning for Cobots</title><author>Dadvar, Mehdi ; Keyvan Majd ; Oikonomou, Elena ; Fainekos, Georgios ; Srivastava, Siddharth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25779516443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Communication</topic><topic>Cost function</topic><topic>Human motion</topic><topic>Motion planning</topic><topic>Robot dynamics</topic><topic>Robots</topic><toplevel>online_resources</toplevel><creatorcontrib>Dadvar, Mehdi</creatorcontrib><creatorcontrib>Keyvan Majd</creatorcontrib><creatorcontrib>Oikonomou, Elena</creatorcontrib><creatorcontrib>Fainekos, Georgios</creatorcontrib><creatorcontrib>Srivastava, Siddharth</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dadvar, Mehdi</au><au>Keyvan Majd</au><au>Oikonomou, Elena</au><au>Fainekos, Georgios</au><au>Srivastava, Siddharth</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Joint Communication and Motion Planning for Cobots</atitle><jtitle>arXiv.org</jtitle><date>2022-03-02</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>The increasing deployment of robots in co-working scenarios with humans has revealed complex safety and efficiency challenges in the computation robot behavior. Movement among humans is one of the most fundamental -- and yet critical -- problems in this frontier. While several approaches have addressed this problem from a purely navigational point of view, the absence of a unified paradigm for communicating with humans limits their ability to prevent deadlocks and compute feasible solutions. This paper presents a joint communication and motion planning framework that selects from an arbitrary input set of robot's communication signals while computing robot motion plans. It models a human co-worker's imperfect perception of these communications using a noisy sensor model and facilitates the specification of a variety of social/workplace compliance priorities with a flexible cost function. Theoretical results and simulator-based empirical evaluations show that our approach efficiently computes motion plans and communication strategies that reduce conflicts between agents and resolve potential deadlocks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2577951644 |
source | Free E- Journals |
subjects | Communication Cost function Human motion Motion planning Robot dynamics Robots |
title | Joint Communication and Motion Planning for Cobots |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A00%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Joint%20Communication%20and%20Motion%20Planning%20for%20Cobots&rft.jtitle=arXiv.org&rft.au=Dadvar,%20Mehdi&rft.date=2022-03-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2577951644%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2577951644&rft_id=info:pmid/&rfr_iscdi=true |