Nitrogen-doped/carbon-coated 2D TiO2 Scaly clusters as high-performance anode for Lithium-ion batteries

TiO 2 has been considered as a promising anode material for lithium-ion batteries (LIBs) due to its low cost and high stability, but its low conductivity has greatly limited its application. In this study, the nitrogen-doped TiO 2 (N-TiO 2 ) with a uniform carbon coating was prepared by the solvothe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2021-10, Vol.32 (19), p.23798-23810
Hauptverfasser: Sun, Jing-Jing, Lei, Cai-Xia, Li, Ze-Yang, Jian, Min-Kun, Lian, Ji-Qiong, Ma, Li-Li, Du, Wei-Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23810
container_issue 19
container_start_page 23798
container_title Journal of materials science. Materials in electronics
container_volume 32
creator Sun, Jing-Jing
Lei, Cai-Xia
Li, Ze-Yang
Jian, Min-Kun
Lian, Ji-Qiong
Ma, Li-Li
Du, Wei-Hao
description TiO 2 has been considered as a promising anode material for lithium-ion batteries (LIBs) due to its low cost and high stability, but its low conductivity has greatly limited its application. In this study, the nitrogen-doped TiO 2 (N-TiO 2 ) with a uniform carbon coating was prepared by the solvothermal method. According the XPS results, the nitrogen was successfully doped in the TiO 2 . The N-doped TiO 2 electrode exhibited obviously higher lithium-ion storage performance, of which the discharge capacity was 420 mAh g −1 under the current density 0.1 A g −1 . Additionally, the superior long-term cycling stability was also observed with a reversible capacity of 148 mAh g −1 after 3000 cycles under 3 A g −1 current density. The result showed that after the nitrogen doped, the replacing of lattice oxygen with nitrogen can decrease the band-gap width and improve the conductivity of titanium oxide. Meanwhile, the oxygen vacancies on the surface of the material can adsorb a large number of lithium ions and produce significant pseudo-capacitance, thus, effectively increasing the specific capacity of the material. Therefore, the N-doped TiO 2 electrode can present obviously higher lithium-ion storage performance.
doi_str_mv 10.1007/s10854-021-06708-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2577919454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2577919454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-68253125d1427d53b2e9f49c6e812759ce917f96a696c30d280e71e434d9db423</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAdWySyWOylPqEYhdWcBcyyZ3plHZSk5lF_72jFdy5uhw437nwIXTN6C2jVM8yo6UUhHJGqNK0JOoETZjUBREl_zhFE2qkJkJyfo4uct5QSpUoyglqXts-xQY6EuIewsy7VMWO-Oh6CJjf41W75PjNu-0B--2Qe0gZu4zXbbMme0h1TDvXecCuiwHwGPGi7dftsCNt7HDl-pFoIV-is9ptM1z93il6f3xYzZ_JYvn0Mr9bEM817YkquSwYl4EJroMsKg6mFsYrKBnX0ngwTNdGOWWUL2jgJQXNQBQimFAJXkzRzXF3n-LnALm3mzikbnxpudTaMCOkGFv82PIp5pygtvvU7lw6WEbtt1B7FGpHofZHqFUjVByhPJa7BtLf9D_UFybrd_M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577919454</pqid></control><display><type>article</type><title>Nitrogen-doped/carbon-coated 2D TiO2 Scaly clusters as high-performance anode for Lithium-ion batteries</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sun, Jing-Jing ; Lei, Cai-Xia ; Li, Ze-Yang ; Jian, Min-Kun ; Lian, Ji-Qiong ; Ma, Li-Li ; Du, Wei-Hao</creator><creatorcontrib>Sun, Jing-Jing ; Lei, Cai-Xia ; Li, Ze-Yang ; Jian, Min-Kun ; Lian, Ji-Qiong ; Ma, Li-Li ; Du, Wei-Hao</creatorcontrib><description>TiO 2 has been considered as a promising anode material for lithium-ion batteries (LIBs) due to its low cost and high stability, but its low conductivity has greatly limited its application. In this study, the nitrogen-doped TiO 2 (N-TiO 2 ) with a uniform carbon coating was prepared by the solvothermal method. According the XPS results, the nitrogen was successfully doped in the TiO 2 . The N-doped TiO 2 electrode exhibited obviously higher lithium-ion storage performance, of which the discharge capacity was 420 mAh g −1 under the current density 0.1 A g −1 . Additionally, the superior long-term cycling stability was also observed with a reversible capacity of 148 mAh g −1 after 3000 cycles under 3 A g −1 current density. The result showed that after the nitrogen doped, the replacing of lattice oxygen with nitrogen can decrease the band-gap width and improve the conductivity of titanium oxide. Meanwhile, the oxygen vacancies on the surface of the material can adsorb a large number of lithium ions and produce significant pseudo-capacitance, thus, effectively increasing the specific capacity of the material. Therefore, the N-doped TiO 2 electrode can present obviously higher lithium-ion storage performance.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-021-06708-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Anodes ; Carbon ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Current density ; Electrode materials ; Ion storage ; Lattice vacancies ; Lithium ; Lithium-ion batteries ; Low conductivity ; Materials Science ; Nitrogen ; Optical and Electronic Materials ; Rechargeable batteries ; Stability ; Titanium dioxide ; Titanium oxides</subject><ispartof>Journal of materials science. Materials in electronics, 2021-10, Vol.32 (19), p.23798-23810</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-68253125d1427d53b2e9f49c6e812759ce917f96a696c30d280e71e434d9db423</cites><orcidid>0000-0003-2552-3273</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-021-06708-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-021-06708-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Sun, Jing-Jing</creatorcontrib><creatorcontrib>Lei, Cai-Xia</creatorcontrib><creatorcontrib>Li, Ze-Yang</creatorcontrib><creatorcontrib>Jian, Min-Kun</creatorcontrib><creatorcontrib>Lian, Ji-Qiong</creatorcontrib><creatorcontrib>Ma, Li-Li</creatorcontrib><creatorcontrib>Du, Wei-Hao</creatorcontrib><title>Nitrogen-doped/carbon-coated 2D TiO2 Scaly clusters as high-performance anode for Lithium-ion batteries</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>TiO 2 has been considered as a promising anode material for lithium-ion batteries (LIBs) due to its low cost and high stability, but its low conductivity has greatly limited its application. In this study, the nitrogen-doped TiO 2 (N-TiO 2 ) with a uniform carbon coating was prepared by the solvothermal method. According the XPS results, the nitrogen was successfully doped in the TiO 2 . The N-doped TiO 2 electrode exhibited obviously higher lithium-ion storage performance, of which the discharge capacity was 420 mAh g −1 under the current density 0.1 A g −1 . Additionally, the superior long-term cycling stability was also observed with a reversible capacity of 148 mAh g −1 after 3000 cycles under 3 A g −1 current density. The result showed that after the nitrogen doped, the replacing of lattice oxygen with nitrogen can decrease the band-gap width and improve the conductivity of titanium oxide. Meanwhile, the oxygen vacancies on the surface of the material can adsorb a large number of lithium ions and produce significant pseudo-capacitance, thus, effectively increasing the specific capacity of the material. Therefore, the N-doped TiO 2 electrode can present obviously higher lithium-ion storage performance.</description><subject>Anodes</subject><subject>Carbon</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Current density</subject><subject>Electrode materials</subject><subject>Ion storage</subject><subject>Lattice vacancies</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Low conductivity</subject><subject>Materials Science</subject><subject>Nitrogen</subject><subject>Optical and Electronic Materials</subject><subject>Rechargeable batteries</subject><subject>Stability</subject><subject>Titanium dioxide</subject><subject>Titanium oxides</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wFXAdWySyWOylPqEYhdWcBcyyZ3plHZSk5lF_72jFdy5uhw437nwIXTN6C2jVM8yo6UUhHJGqNK0JOoETZjUBREl_zhFE2qkJkJyfo4uct5QSpUoyglqXts-xQY6EuIewsy7VMWO-Oh6CJjf41W75PjNu-0B--2Qe0gZu4zXbbMme0h1TDvXecCuiwHwGPGi7dftsCNt7HDl-pFoIV-is9ptM1z93il6f3xYzZ_JYvn0Mr9bEM817YkquSwYl4EJroMsKg6mFsYrKBnX0ngwTNdGOWWUL2jgJQXNQBQimFAJXkzRzXF3n-LnALm3mzikbnxpudTaMCOkGFv82PIp5pygtvvU7lw6WEbtt1B7FGpHofZHqFUjVByhPJa7BtLf9D_UFybrd_M</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Sun, Jing-Jing</creator><creator>Lei, Cai-Xia</creator><creator>Li, Ze-Yang</creator><creator>Jian, Min-Kun</creator><creator>Lian, Ji-Qiong</creator><creator>Ma, Li-Li</creator><creator>Du, Wei-Hao</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-2552-3273</orcidid></search><sort><creationdate>20211001</creationdate><title>Nitrogen-doped/carbon-coated 2D TiO2 Scaly clusters as high-performance anode for Lithium-ion batteries</title><author>Sun, Jing-Jing ; Lei, Cai-Xia ; Li, Ze-Yang ; Jian, Min-Kun ; Lian, Ji-Qiong ; Ma, Li-Li ; Du, Wei-Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-68253125d1427d53b2e9f49c6e812759ce917f96a696c30d280e71e434d9db423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anodes</topic><topic>Carbon</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Current density</topic><topic>Electrode materials</topic><topic>Ion storage</topic><topic>Lattice vacancies</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Low conductivity</topic><topic>Materials Science</topic><topic>Nitrogen</topic><topic>Optical and Electronic Materials</topic><topic>Rechargeable batteries</topic><topic>Stability</topic><topic>Titanium dioxide</topic><topic>Titanium oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Jing-Jing</creatorcontrib><creatorcontrib>Lei, Cai-Xia</creatorcontrib><creatorcontrib>Li, Ze-Yang</creatorcontrib><creatorcontrib>Jian, Min-Kun</creatorcontrib><creatorcontrib>Lian, Ji-Qiong</creatorcontrib><creatorcontrib>Ma, Li-Li</creatorcontrib><creatorcontrib>Du, Wei-Hao</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Jing-Jing</au><au>Lei, Cai-Xia</au><au>Li, Ze-Yang</au><au>Jian, Min-Kun</au><au>Lian, Ji-Qiong</au><au>Ma, Li-Li</au><au>Du, Wei-Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrogen-doped/carbon-coated 2D TiO2 Scaly clusters as high-performance anode for Lithium-ion batteries</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>32</volume><issue>19</issue><spage>23798</spage><epage>23810</epage><pages>23798-23810</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>TiO 2 has been considered as a promising anode material for lithium-ion batteries (LIBs) due to its low cost and high stability, but its low conductivity has greatly limited its application. In this study, the nitrogen-doped TiO 2 (N-TiO 2 ) with a uniform carbon coating was prepared by the solvothermal method. According the XPS results, the nitrogen was successfully doped in the TiO 2 . The N-doped TiO 2 electrode exhibited obviously higher lithium-ion storage performance, of which the discharge capacity was 420 mAh g −1 under the current density 0.1 A g −1 . Additionally, the superior long-term cycling stability was also observed with a reversible capacity of 148 mAh g −1 after 3000 cycles under 3 A g −1 current density. The result showed that after the nitrogen doped, the replacing of lattice oxygen with nitrogen can decrease the band-gap width and improve the conductivity of titanium oxide. Meanwhile, the oxygen vacancies on the surface of the material can adsorb a large number of lithium ions and produce significant pseudo-capacitance, thus, effectively increasing the specific capacity of the material. Therefore, the N-doped TiO 2 electrode can present obviously higher lithium-ion storage performance.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-021-06708-6</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2552-3273</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2021-10, Vol.32 (19), p.23798-23810
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2577919454
source SpringerLink Journals - AutoHoldings
subjects Anodes
Carbon
Characterization and Evaluation of Materials
Chemistry and Materials Science
Current density
Electrode materials
Ion storage
Lattice vacancies
Lithium
Lithium-ion batteries
Low conductivity
Materials Science
Nitrogen
Optical and Electronic Materials
Rechargeable batteries
Stability
Titanium dioxide
Titanium oxides
title Nitrogen-doped/carbon-coated 2D TiO2 Scaly clusters as high-performance anode for Lithium-ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A58%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrogen-doped/carbon-coated%202D%20TiO2%20Scaly%20clusters%20as%20high-performance%20anode%20for%20Lithium-ion%20batteries&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Sun,%20Jing-Jing&rft.date=2021-10-01&rft.volume=32&rft.issue=19&rft.spage=23798&rft.epage=23810&rft.pages=23798-23810&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-021-06708-6&rft_dat=%3Cproquest_cross%3E2577919454%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2577919454&rft_id=info:pmid/&rfr_iscdi=true